Content and Mobility of Strontium in Forest Soils According to North-South Transect in Poland

Open access


The investigation was carried out on forest soils collected from areas subject to variable pollution. The fraction of strontium was analyzed in soil samples from north-eastern Poland (Borki forest division), treated as a non-polluted region (natural background) and in soil samples from central (Rogów forest division) and south-western Poland (Świerklaniec forest division). The sequential extraction procedure was applied in this study to separate the fractions of strontium. Five fractions were analyzed in every genetic horizon according to the Tessier method. The concentration of strontium was also analyzed in the plants. Both results were compared in order to evaluate the mobility and bioavailability of the trace elements in the environment. The content, distribution and bioavailability of the strontium fractions were investigated with particular emphasis on the contaminated study sites. Total content of strontium in surface horizons depended on the localization. Among analysed fractions strontium, in organic soil horizons, regardless of localization, occurred predominantly in mobile fractions in all examined soils.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Capo R.C. Steward B.W. & Chadwick O.A. (1998). Strontium isotopes as tracers of ecosystem processes: theory and methods Geoderma 82 197-225.

  • [2] Clevenger T.E. (1990). Use of Sequential Extraction to Evaluate the Heavy Metals in Mining Wasted Water Air & Soil Pollution 50 241-254.

  • [3] Cornelis A.M. & Van Gestel. (2008). Physico-chemical and biological parameters determine metal bioavailability in soils Science of The Total Environment 406 385-395.

  • [4] Głosińska G. Sobczyński T. & Siepak J. (2007). Badanie frakcjonowania wybranych metali ciężkich w osadach dennych środkowej Odry Zeszyty Naukowe. Inżynieria Środowiska Uniwersytet Zielonogórski 133 13 123-130.

  • [5] Gworek B. & Mocek A. (2003). Comparsion of Sequential Extraction Methods with Reference to Zinc Fractions in Contaminated Soils Polish Journal of Environmental Studies 12 1 41-48.

  • [6] Kabata-Pendias A. & Pendias H. (2001). Trace Elements in Soils and Plants CRC Press Washington D.C.

  • [7] Klojzy-Kaczmarczyk B. (2011). Ocena zagrożenia zanieczyszczenia rtęcią wód podziemnych w wyniku oddziaływania wybranych odcinków dróg na obszarze centralnej Polski Annual Set The Environment Protection (Rocznik Ochrona Środowiska) 13 1767-1782.

  • [8] Kozanecka T. Chojnicki J. & Kwasowski W (2002). Content of Heavy Metals in plant from Pollution-Free Regions Polish Journal of Environmental Studies 11 4 395-399.

  • [9] Li J. He M. Han W. & Gu Y. (2009). Availability and mobility of heavy metal fractions related to the characteristics of coastal coils developed from alluvial deposits Environ Monit Assess 158 459-469.

  • [10] Łaszewska A. Kawol J. Wiechuła D. & Kwapuliński J. (2007). Kumulacja metali w wybranych gatunkach roślin leczniczych z terenu Beskidu Śląskiego i Beskidu Żywieckiego Problemy Ekologii 11 6 285-291.

  • [11] Madeyski M. Tarnawski M. Jasiewicz C. & Baran A. (2009). Fractionation of chosen heavy metals in bottom sediments of smallwater reservoirs Archives of Environmental Protection 35 3 47-57.

  • [12] Ociepa E. Ociepa-Kubicka A. Okoniewska E. & Lach J. (2013). Immobilizacja cynku i kadmu w glebach w wyniku stosowania substratów odpadowych Annual Set The Environment Protection (Rocznik Ochrona Środowiska) 15 1772-1786.

  • [13] Quevauviller P. (2003). Book Review Methodologies for soil and sediment fractionation studies The science of the Total Environment 303 263-264.

  • [14] Rudd T. Take D.L Mehrotra Sterritt R.M. Kirk P.W.W. Campbell J.A. & Lester J.N. (1988). Characterization of metal forms in sewage sludge by chemical extraction and progressive acidification Science of The Total Environment A 140-175.

  • [15] Salomons W. & Föstner U. (1980). Trace metal analysis on polluted sediments Part II:Evaluation of environment impact Environmental Technology Letters 1 506-517.

  • [16] Siebielec G. Stuczyński T. & Korzeniowska-Pacułek R. (2006). Metal Bioavailability in Long-Term Contaminatred Tarnowskie Góry Soils Polish Journal of Environmental Studies 15 1 121-129.

  • [17] Stempin M. Kwapuliński J. Brodziak B. Trzcionka J. & Ahnert B. (2002). Ocena kontaminacji roślin metalami na terenach miedzionośnych Bromatologia i Chemia Toksykologiczna 35 3 275-282.

  • [18] Skvarla J. (1998). A Study on the trace metal speciation in the Ružin reservoir sediment. Acta Montanistica Slovaca 3 2 172-182.

  • [19] Sysoeva A.A. Konopleva I.V. & Sanzharzova N.I. (2005). Bioavailability of radiostrontium in soil: Experimental study and modeling Journal of Environmental Radioactivity 81 269-282.

  • [20] Tessier A. Campbell P.G.C. & Bisson M. (1979). Sequential extraction procedure for the speciation of particular trace elements Analizy chemiczne 5 884-850.

  • [21] Veresoglou D.S. Tsialtas J.T. Barbayiannis N. & Zalidis G.C. (1995). Caesium and strontium uptake by two pasture plant species grown in organic and inorganic soils Agriculture Ecosystems and Environment 56 37-42.

  • [22] Wenzel W.W. & Jockwer F. (1999). Accumulation of heavy metals in plants grown on mineralized soils of the Austrian Alps Environmental Pollution 104 145-155.

Journal information
Impact Factor

IMPACT FACTOR 2016: 0.708
5-year IMPACT FACTOR: 0.835

CiteScore 2018: 1.71

SCImago Journal Rank (SJR) 2018: 0.489
Source Normalized Impact per Paper (SNIP) 2018: 1.011

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 165 85 2
PDF Downloads 59 37 1