E Ffects of the Solubilisation of the Cod of Municipal Waste in Thermal Disintegration

Open access

Abstract

This paper presents the content changes in the Chemical Oxygen Demand (COD) solubilised in hydrolisates obtained from thermally disintegrated municipal waste biofractions. A series of tests related to biowaste undergoing thermal treatment at the following temperatures: 55, 75, 95, 115, 135, 155 and 175°C were conducted for 0.5, 1 and 2 hours. The highest increase in COD solid fraction solubilisation (238%) was observed for the samples disintegrated at 175°C for 2 hours. The values of the reaction rate coefficient k20 = 0.6 d-1 and temperature coefficient θ = 1.023 were determined. Statistical analysis of the multiple regression (correlation coefficient R = 0.89) showed that the temperature has a greater impact on COD solid fraction solubilisation - determined β = 0.66. The multiple correlation coefficient for the treatment time was β = 0.61.

[1] Barlindhaug, J., & Odegaard, H. (1996). Thermal hydrolysis for the production of carbon source for denitrification, Water Science Technology, 34 (1-2), 371-378.

[2] Białowiec, A., Bernat, K., Wojnowska-Baryła, I., & Agopsowicz, M. (2008). The effect of mechanical pretreatment of municipal solid waste on its potential in gas production, Archives of EnvironmentalProtection, 34 (3), 115-124.

[3] Bobleter, O. (1994). Hydrothermal degradation of polymers derived from plants, Progress in PolymerScience, 19, 797-841.

[4] Borges, E.S.M., & Chernicharo, C.A.L. (2009). Effect of thermal treatment of anaerobic sludge on the bioavailability and biodegradability characteristics of the organic fraction, Brazilian J. of Chem. Engineering, 26 (03), 469-480.

[5] Bougrier, C., Delgenes, J.P., & Carrere, H. (2008). Effects of thermal treatments on five different waste activated sludge samples solubilisation, physical properties and anaerobic digestion, ChemicalEngineering Journal, 139 (2), 236-244.

[6] Christ, O., Wilderer, P.A.,. Angerhöfer, R.R., & Faulstich M. (2000). Mathematical modeling of the hydrolysis of anaerobic processes, Water Science and Technology, 41 (3), 61-65.

[7] Chynoweth, D., & Isaacson, R. (1987). Anaerobic digestion of biomass, Elsevier Applied Science Publishers LTD.

[8] Deublein, D., & Steinhauser, A. (2008). Biogas from waste and renewable resources, Wiley-VCH Verlag.

[9] Elbing, G. & Dünnebeil, A. (1999). Thermal disintegration with subsequent digestion lab-scale investigation, Korrespondenz Abwasser, 46, 538-547.

[10] Eastman, J.A., & Ferguson, J.F. (1981). Solubilization of particulate organic carbon during the acid phase of anaerobic digestion, J. Water pollution Control Wed, 53, 352-366.

[11] Fox, M.H., Noike, T., & Ohki, T. (2003). Alkaline subcritical-water treatment and alkaline heat treatment for the increase in biodegradability of newsprint waste, Water Science and Technology, 48 (4), 77-84.

[12] García, A.J., Esteban, M.B., Márquez, M.C., & Ramos, P. (2005). Biodegradable municipal solid waste: Characterization and potential use as animal feedstuffs, Waste Management, 25, 780-787.

[13] Gujer, W.. & Zehnder, A.J. (1983). Conversion processes in anaerobic digestion, Water Science andTechnology, 15, 127-167.

[14] Jolis, D. (2008). High-solids anaerobic digestion of municipal sludge pretreated by thermal hydrolysis, Water Environment Research, 80 (7), 654-662.

[15] Kepp, U., Machenbach, I., Weisz, N., & Solheim, O.E. (2000). Enhanced stabilization of sewage sludge through thermal hydrolysis, 3 years of experience with full-scale plant, Water Science Technology, 42 (9), 89-96.

[16] Khanal, S.K. (2008). Anaerobic biotechnology for bioenergy production, Wiley-Blackwell, A John Wiley&Sons Publications.

[17] Liebetrau, J., Kraft, E., & Bidlingmaier, W. (2004). The influence of the hydrolysis rate of co-substrates on process behaviour, w: Guiot, S.G. (Ed.), Proceedings of the Tenth World Congress on Anaerobic. Canadian Association on Water Quality, Montreal, 1296-1300.

[18] Lissens, G., Thomsen, A.B., De Baere, L., Versraete, W., & Ahring, B. (2004). Thermal wet oxidation improves anaerobic digestion of raw and digested biowaste, Environmental Science and technology, 38, 3418-3424.

[19] Lynd, L.R., Weimer, P.J., van Zyl, W.H., & Pretorius, I.S. (2002). Microbial cellulose utilization: fundamentals and biotechnology, Microbial and Molecular Biology Research, 66, 506-577.

[20] Machnicka, A., Grübel, K., & Suschka, J. (2009). The use of disintegrated foam to accelerate anaerobic digestion of activated sludge, Archives of Environmental Protection, 35 (3), 11-19.

[21] Myszograj, S. (2007). The influence of thermo-chemical treatment of primary sludge on methane fermentation process, Environmental protection into the future, red. Wojciech Nowak, January Bień, Częstochowa, 228-237.

[22] Myszograj, S. (2010). Effects and mathematical modelling of thermal pretreatment of waste activated sludge, Polish Journal of Environmental Studies, 2, 166-170.

[23] Papadimitriou, E.K. (2010). Hydrolysis of organic matter during autoclaving of commingled household waste, Waste Management, 30, 572-582.

[24] Sanders, W.T., Geerink, M., Zeeman, G., & Lettinga, G. (2000). Anaerobic hydrolysis kinetics of particulate substrates, Water Science and Technology, 41 (3), 17-24.

[25] Sargalski, W., Solheim, O., & Fjordside, C. (2007). Treating organic waste with Cambi® THP, Conference Biosolids, Manchester.

[26] Sawayama, S., Inoue, S., Tsukahara, K., Yagishitta, T., & Minowa, T. (1999). Anaerobic treatment liquidized organic wastes, Renewable Energy, 16, 1094-1097.

[27] Schieder, D., Schneider, R., & Bischof, F. (2000). Thermal hydrolysis (TDH) as a pretreatment method for the digestion of organic waste, Water Science and Technology, 41 (3), 181-187.

[28] Tsukahara, K., Yagishita, T., Ogi, T., & Sawayama, S. (1999). Treatment of liquid fraction separated from liquidized food waste in an upflow anaerobic sludge blanket reactor, Journal of bioscience andbioengineering, 87 (4), 554-536.

[29] Vavilin, V.A., Lokshina, L.Y., Flotats, X., & Angelidaki, I. (2007). Anaerobic digestion of solid material: Multidimensional modeling of continuous-flow reactor with non-uniform influent concentration distributions, Biotechnology and Bioengineering, 97 (2), 345-366.

[30] Vavilin, V.A., Fernandez, B., Palatsi, J., & Flotats, X. (2008). Hydrolysis kinetics in anaerobic degradation of particulate organic material: an overview, Waste Management, 28 (6), 939-51.

[31] Veeken, A., & Hamelers, B. (1999). Effect of temperature on hydrolysis rate of selected biowaste components, Bioresource technology, 69, 249-254.

[32] Wilson Ch.A., & Novak J.T. (2009). Hydrolysis of macromolecular components of primary and secondary wastewater sludge by thermal hydrolytic pretreatment, Water Reserch, 43, 4489-4498.

[33] Rozporządzenie Ministra Gospodarki i Pracy z dnia 7 września 2005 r. w sprawie kryteriów oraz procedurdopuszczania odpadów do składowania na składowisku odpadów danego typu (Dz.U. Nr 186, poz. 1553, z poźn. zm.).

[34] Uchwała Nr 217 Rady Ministrów z dnia 24 grudnia 2010 r. w sprawie „Krajowego planu gospodarkiodpadami 2014” (M. P. Nr 101, poz. 1183). Dyrektywa Rady 1999/31/WE z dnia 26 kwietnia 1999 r. w sprawie składowania odpadów (Dz. Urz. WE L 182 z 16.07.1999, str. 1, z poźn. zm.).

[35] Dyrektywa Parlamentu Europejskiego i Rady 2008/98/WE z dnia 19 listopada 2008 r. w sprawie odpadóworaz uchylająca niektóre dyrektywy (Dz.Urz. UE z 22.11.2008 nr L 312/3)

[36] GUS. Ochrona Środowiska 2010, Informacje i opracowania statystyczne.

Archives of Environmental Protection

The Journal of Institute of Environmental Engineering and Committee of Environmental Engineering of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.708
5-year IMPACT FACTOR: 0.835

CiteScore 2017: 1.01

SCImago Journal Rank (SJR) 2017: 0.371
Source Normalized Impact per Paper (SNIP) 2017: 0.737

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 159 159 13
PDF Downloads 49 49 4