Kinetic Constants of Decomposition of the Municipal Solid Waste Prior to and after Mechanical-Biological Processing. Field Scale / Stałe Kinetyczne Rozkładu Zmieszanych Odpadów Komunalnych Przed I Po Mechaniczno-Biologicznym Przetworzeniu. Skala Polowa

Open access

Abstract

One of the major tasks of municipal waste management in European Union countries is the systematic reduction of waste that is removed and transported to landfills. This refers particularly to biodegradable waste. One of the methods employed to decrease waste amount is Mechanical-Biological Treatment (MBT) of the waste, before it is stored.

The article presents characteristics of MSW and biologically pre-treated municipal solid waste, organic carbon loads emitted in biogas and leachate during waste deposition in a landfill. Its decomposition rate constants were determined on the basis of modified Zacharof and Butler’s stochastic model. The values of decomposition rate constants determined for MSW had similar change trends to those presented in the literature: the hydrolysis constant had the lowest value (2.6 × 10-5 d-1), the highest acid phase constant (4.1 × 10-4 d-1), while the methane phase constant - 2.2 × 10-4 d-1. The PMSW decomposition rate constants in each anaerobic waste degradation phase had similar change trends, though their values were higher, by 21, 11 and 19%, respectively.

[1] Bastone, D.J., Keller, K., Angelidaki, I., Kalyuzhnyi, S.V., Pavlostathis, S.G., Rozzi, A., Sanders, W.T.M., Siegrist, H., Vavilin, V.A. (2002). Anaerobic digestion model no 1, Scientific and Technical Report, 45, 65-73.

[2] Brinkmann, U., Höring, K., Heim, M., Ehrig, H.J. (1995). Effect of pre-composting on the long-termbehaviour of MSW landfills. In Christensen, T.H., Cossu, R. & Stegmann, R. (Eds.), Proceedings Sardinia ’95, Fifth International Landfill Symposium (pp. 971-985). Sardinia 1995.

[3] Capella, I.F., Azeiteiro, C., Arroja, L., Duarte, A.C. (1999). Effects of pre-treatment (composting) on theanaerobic digestion of primary sludges from a bleached kraft pulp mill. In Mata-Alvarez, J., Tilche, A., Cecchi, F., (Eds.), Proceedings of the International symposium on anaerobic digestion of solid waste (pp. 113-120). Barcelona 1999.

[4] Council Directive 1999/31/EC as of 26 April 1999 on waste landfill, subsequently amended by the Regulation of the European Parliament of the 1st Council (EC), no 1882/2003 (EC Official Journal L 182 as of 16th of July 1999, page 1 with subsequent amendments).

[5] El-Fadel, M., Fidikakis, A.N., Leckie, J.O. (1996). Numerical modeling of generation and transport ofgas and heat in sanitary landfills: II. Model Formulation, Waste Management & Research, 14, 537-551.

[6] El-Fadel, M., Fidikakis, A.N., Leckie, J.O. (1997). Numerical modeling of generation and transport ofgas and heat in sanitary landfills: III. Sensitivity analysis, Waste Management & Research, 15, 537-551.

[7] Garcia de Cortazar, A.L., Monzon, T.I. (2007). Application of simulation models to the diagnosis of MSWlandfills: an example, Waste Management, 27, 691-703.

[8] Haarstrick, A., Hempel, D.C., Ostermann, L. Ahrens, H., Dinkler, D. (2001). Modeling of thebiodegradation of organic matter in municipal landfills, Waste Management & Research, 19, 320-331.

[9] Jokela, J.P., Vavilin, V.A., Rintala, J.A. (2005). Hydrolysis rate, methane production and nitrogensolubilisation of grey waste components during anaerobic degradation, Bioresource Technology, 96, 501-508.

[10] Komilis, D.P., Ham, R.K., Stegmann, R. (2006). The effect of landfill design and operation practices onwaste degradation behavior: a revie, Waste Management & Research, 17, 20-26.

[11] Lebiocka M., Montusiewicz A., Pawłowska M., Ozonek J., Szkutnik E., Rosłan M. (2008). Influence ofozonation on leachate quality from landfills with different degrees of solid waste pre-treatment, Archives of Environmental Protection, 34, 63-70.

[12] Lee, J.J., Jung, I.H., Lee, W.B., Kim, J.O. (1993). Computer and experimental simulations of theproductions of methane gas from municipal solid waste, Water Science and Technology, 27, 225-234.

[13] Manna L., Zanneti M.C., Genon G. (1999). Modeling biogas production at landfill site, Resources Conservation and Recycling, 26, 1-14.

[14] McBean, E., Rovers, F., and Farquhar, G. (1998). Solid Waste Landfill Engineering and Design, Prentice-Hall Publishing Co. Inc., Englewood Cliffs, New Jersey 1995.

[15] Musmeci, L. (1998). Organic fraction of municipal solid waste (OFMSW): extent of biodegradation, Waste Management, 16, 103-107.

[16] Oksendal, B. (2000). Stochastic differential Equations, Spinger, Berlin, 2000.

[17] Pohland, F.G., Ghosh, S. (1971). Developments in anaerobic stabilization of organic wastes-the twophase concept, Environmental Letters, 1, 255-266.

[18] Reinhart, D.R., Al.-YousfiA.B. (1996). The impact of leachate recirculation on municipal solid wastelandfill operating characteristics, Waste Management & Reserch, 14, 337-46.[19] Robinson, H.D., Knox, K., Bone, B.D. (2004). Improved definition of leachate source term from landfillsPhase 1: review of data from European landfills, Science Report Environment Agency 2004.

[20] Sanphoti, N., Towprayoon, S., Chaiprasert, P., Nopharatana, A. (2006). The effects of leachaterecirculation with supplemental water addition on methane production and waste decomposition ina simulated landfill, Journal of Environmental Management, 81, 27-35.

[21] Schön, M.: Verfahren zur Vergärung organischer Rückstände in der Abfallwirtschaft, Verlag E. Schmidt GmbH & Co., Berlin 1994.

[22] Stegman, R. (1991). Vorteile der Restmüll - Aufbereitung zur Senkung der Gasemissionen von Deponien.

Aufbereitung fester Siedlungsabfälle vor der Deponierung, Zentrum für Abfallforschung, Technical University of Braunschweig, 6, 341-359.

[23] Vanrolleghem, P.A., Insel, G., Peterson, B., Sin, G., De Pauw, D., Nopens, I., Dovermann, H., Weijers, S., Gernaey, K. (2003). Comprehensive model calibration procedure for activated sludge model. In Proceedings 76th Annual Technical Exhibition and Conference. October 11-15, Los Angeles, CA, USA

2003.

[24] Vavilin, V.A., Rytov, S.V., Lokshina, L.Y. (1996). A description of hydrolysis kinetics in anaerobicdegradation of particulate organic matter, Bioresource Technology, 56, 229-237.

[25] Vavilin, V.A., Lokshina, L., Jokela, J.P.Y., Rintala, J.A. (2004). Modeling solid waste decomposition, Bioresource Technology, 94, 69-81.

[26] Vavilin, V.A., Fernandez, B., Palatsi, J., Flotats X. (2008). Hydrolysis kinetics anaerobic degradation ofparticulate organic material: An overview, Waste Management, 28, 939-951.

[27] Waste Management Act, as of 27 April 2001 (Journal of Laws, 2001.62.628).

[28] Young, A. (1989). Mathematical modeling of landfill degradation, Journal of Chemical Technology & Biotechnology, 46, 189-208.

[29] Young, A. (1995) Mathematical modeling of the metanogenic ecosystem, Microbiology of landfill sites, Lewis Publisher, USA.

[30] Zacharof, A.I., Butler, A.P. (2004) Stochastic modeling of landfill processes incorporating wasteheterogeneity and data uncertainty, Waste Management, 24, 241-250.

Archives of Environmental Protection

The Journal of Institute of Environmental Engineering and Committee of Environmental Engineering of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.708
5-year IMPACT FACTOR: 0.835

CiteScore 2017: 1.01

SCImago Journal Rank (SJR) 2017: 0.371
Source Normalized Impact per Paper (SNIP) 2017: 0.737

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 113 112 11
PDF Downloads 40 39 6