X-Ray Computer Tomography Study of Degradation of the Zircaloy-2 Tubes Oxidized at High Temperatures

Open access


The investigations of high-temperature oxidation of zirconium alloys, applied for fuel pellets in nuclear power plants, are usually limited to oxidation kinetics, phase transformations and microstructural characterization. The purpose of this research was to characterize the degradation phenomena occurring within oxide layer and at the interface oxide/metal, on internal and external Zircaloy-2 tube surfaces, below and over crystalline transformation temperature of zirconium oxides. The commercial tubes were oxidized at 1273 K and 1373 K in calm air for 30 min and then examined with a technique novel for such purpose, namely a high-resolution X-ray computer tomography. The light microscopy was used to examine the cross-surfaces. The obtained results show that the form and intensity of oxide damage is significant and it is in a complicated way related to oxidation temperature and on whether external or internal tube surface is studied. The found oxide layer damage forms include surface cracks, the detachment of oxide layers, the appearance of voids, and nodular corrosion. The oxidation effects and damage appearance are discussed taking into account the processes such as formation of oxides, their phase transformation, stress-enhanced formation and propagation of cracks, diffusion of vacancies, formation of nitrides, diffusion of hydrogen into interface oxide-metal, incubation of cracks on second phase precipitates are taken into account to explain the observed phenomena.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Proff C. Abolhassani S. Lemaignan C. Oxidation behaviour of zirconium alloys and their precipitates – A mechanistic study. J. Nucl. Mater. 432 (2013) 222–238.

  • 2. Allen T.R. Konings R.J.M. Motta A.T. Corrosion of zirconium alloys. [In] Comprehensive Nuclear Materials R.J.M Konings. (ed.) Elsevier Amsterdam 2012 pp. 49–68.

  • 3. Park K. Yang S. Ho K. The effect of high pressure steam on the oxidation of low-Sn Zircaloy-4 at temperatures between 700 and 900 °C. J. Nucl. Mater. 420 (2012) 39–48.

  • 4. Steinbrück M. Böttcher M. Air oxidation of Zircaloy-4 M5 and ZIRLO cladding alloys at high temperatures. J. Nucl. Mater. 414 (2011) 276–285.

  • 5. Coindreau C. Duriez C. Ederli S. : Air oxidation of Zircaloy-4 in the 600–1000 °C temperature range: Modeling for ASTEC code application. J. Nucl. Mater. 405 (2010) 207–215.

  • 6. Selmi N. Sari A. Study of oxidation kinetics in air of Zircaloy-4 by in situ X-Ray diffraction. Adv. Mater. Phys. Chem. 3 (2013) 168–173.

  • 7. Sawabe T. Sonoda T. Furuya M. Kitajima S. Kinoshita M. Tokiwai M. Microstructure of oxide layers formed on zirconium alloy by air oxidation uniform corrosion and fresh-green surface modification. J. Nucl. Mater. 419 (2011) 310–319.

  • 8. Gong W Zhang H Qiao Y. Tian H. Ni X. Li Z. Wang X. Grain morphology and crystal structure of pre-transition oxides formed on Zircaloy-4. Corr. Sci. 74 (2013) 323–331.

  • 9. Harlow W. Ghassemi H. Taheri M.L. Determination of the initial oxidation behavior of Zircaloy-4 by in-situ TEM. J. Nucl. Mater. 474 (2016) 126–133.

  • 10. Ishii Y. Sykes J.M. Microstructure of oxide layers formed on Zircaloy-2 in air at 450°C. Mater. High Temp. 17 (2014) 23–28.

  • 11. Gosset D. Le Saux M.L. Simeone D. Gilbon D. : New insights in structural characterization of zirconium alloys oxidation at high temperature. J. Nucl. Mater. 429 (2012) 19–24.

  • 12. Gosset D. Le Saux M.L. In-situ X-ray diffraction analysis of zirconia layer formed on zirconium alloys oxidized at high temperature. J. Nucl. Mater. 458 (2015) 245–252.

  • 13. Baek J.H. Jeong Y.H. Breakaway phenomenon of Zr-based alloys during a high-temperature oxidation. J. Nucl. Mater. 372 (2008) 152–159.

  • 14. Yamato M Nagase F Amaya M. Reduction in the onset time of breakaway oxidation on Zircaloy cladding ruptured under simulated LOCA conditions. J. Nucl. Mater. 445 (2014) 78–83.

  • 15. Fettré D. Favergeon J. Bouvier S. Detection of breakaway for a high-temperature oxidation of pure zirconium using acoustic emission correlated to thermogravimetry. Oxid. Met. 87 (2017) 367–379.

  • 16. Kim H.G. Kim I.H. Choi B.K. Park Y.Y. A study of the breakaway oxidation behavior of zirconium cladding materials. J. Nucl. Mater. 418 (2011) 186–197.

  • 17. Kim H.H. Kim J.H. Moon J.Y. Lee H.S. Kim J.J. Chai Y.S. High-temperature oxidation behavior of Zircaloy-4 and Zirlo in steam ambient. J. Mater. Sci. Technol. 26 (2010) 827–832.

  • 18. Zienkiewicz N. Paradowska J. Serbinski W. Gajowiec G. Hernik A. Zielinski A. Oxidation and hydrogen behavior in Zr-2Mn alloy. Adv. Mater. Sci. 18 (2018) 37–48.

  • 19. Annand K. Nord M. Maclaren I. Gass M. The corrosion of Zr(Fe Cr)2 and Zr2Fe secondary phase particles in Zircaloy-4 under 350 °C pressurised water conditions. Corr. Sci. 128 (2017) 213–223.

  • 20. Park D.J. Park J.Y. Jeong J.H. Microstructural analysis and XPS investigation of nodular oxides formed on Zircaloy-4. J. Nucl. Mater. 412 (2011) 233–238.

  • 21. Lee C.M. Mok Y.K. Sohn D.S. : High-temperature steam oxidation and oxide crack effects of Zr-1Nb-1Sn-0.1Fe fuel cladding. J. Nucl. Mater. 496 (2017) 343–352.

  • 22. Nikulin S.A. Rogachev S.O. Rozhnov A.B. Gusev A.Yu. Malgin A.G. Abramov N.N. Zharotsheva K.S. Khatkevich V.M. Koteneva M.V. Li E.V. The mechanism and kinetics of the fuel cladding failure during loading after high-temperature oxidation. J. Nucl. Mater. 452 (2014) 102–109.

  • 23. Ni N. Lozano-Perez S. Sykes J.M. Smith G.D.W. Grovenor C.R.M. Focussed ion beam sectioning for the 3D characterisation of cracking in oxide scales formed on commercial ZIRLO alloys during corrosion in high temperature pressurised water. Corr. Sci. 53 (2011) 4073–4083.

  • 24. Ni N. Lozano-Perez S. Sykes J. Grovenor C. : Multi-scale characterisation of oxide on zirconium alloys. Mater. High. Temp. 29 (2014) 166–170.

  • 25. Steinbrück M. Vér N. Große M. Oxidation of Advanced Zirconium Cladding Alloys in Steam at Temperatures in the Range of 600–1200 °C. Oxid. Met. 76 (2011) 215–232.

  • 26. Favergeon J. Montesin T. Mechano-Chemical Aspects of High Temperature Oxidation: A Mesoscopic Model Applied to Zirconium Alloys. Met. Oxid. 64 (2005) 252–279.

  • 27. Duriez C. Dupont T. Schmet B. Enoch F. Zircaloy-4 and M5® high temperature oxidation and nitriding in air. J. Nucl. Mater. 380 (2008) 30–45.

  • 28. Zeng C. Ling Y. Bai Y. Zhang R. Dai X. Chen Y. Hydrogen permeation characteristic of nanoscale passive films formed on different zirconium alloys. Intl. J. Hydrogen Energy 41 (2016) 7676–7690.

  • 29. Zieliński A. Cymann A. Gumiński A. Hernik A. Gajowiec G. Influence of high temperature oxidation hydrogen absorption and degradation of Zircaloy-2 and Zr 700 alloys. High Temp. Mater. Proc. 38 (2019) 8–15.

  • 30. Yoo H.-I. Koo B.-J. Hong J.-O. Hwang I.-S. Yeong I.-H. A working hypothesis on oxidation kinetics of Zircaloy. J. Nucl. Mater. 299 (2001) 235–241.

  • 31. Lee K. W. Hong S.I. Zirconium hydrides and their effect on the circumferential mechanical properties of Zr–Sn–Fe–Nb tubes. J. Alloys Cmpds 346 (2002) 302–307.

  • 32. Kurpaska L. Jozwik I. Jagielski J. Study of sub-oxide phases at the metal-oxide interface in oxidized pure zirconium and Zr-1.0% Nb alloy by using SEM/FIB/EBSD and EDS techniques. J. Nucl. Mater. 299 (2001) 235–241.

  • 33. De Gabory B. Motta A.T. Wang K. Transmission electron microscopy characterization of Zircaloy-4 and ZIRLO oxide layers. J. Nucl. Mater. 456 (2015) 272–280.

  • 34. Tejland P. Andrén H.-A. Origin and effect of lateral cracks in oxide scales formed on zirconium alloys. J. Nucl. Mater. 430 (2012) 64–71.

  • 35. Guerain M. Duriez C. Grosseau-Poussard J.L. Mermoux M. Review of stress fields in zirconium alloys corrosion scales. Corr. Sci. 95 (2015) 11–21.

  • 36. Baris S. Abolhassani Y.L. Chiu L. Evans H.E. (2018) Observation of crack microstructure in oxides and its correlation to oxidation and hydrogen-uptake by 3D FIB Tomography – case of Zr-ZrO2 in reactor. Mater. High Temp. 35 (2018) 14–21.

  • 37. Birchley J. Fernandez-Moguel L. : Simulation of air oxidation during a reactor accident sequence: Part 1 - Phenomenology and model development. Ann. Nucl. Energy. 40 (2012) 163–170.

  • 38. Rudling P. Wikmark G.A. A unified model of Zircaloy BWR corrosion and hydriding mechanisms. J. Nucl. Mater. 265 (1999) 44–59.

  • 39. Yilmazbayhan A. Breval E. Motta A.T. Comstock R.J. Transmission electron microscopy examination of oxide layers formed on Zr alloys. J. Nucl. Mater. 349 (2006) 265–281.

  • 40. Steinbrück M. Birchley J. Boldyrev A.V. Goryachev A.V. Grosse M. Haste T.J. Hózer Z. Kisselev A.E. Nalivaev V.I. Semishkin V.P. Sepold L. Stuckert J. Vér N. Veshchunov M.S. High temperature oxidation and quench behaviour of Zircaloy-4 and E110 cladding alloys. Progr. Nucl. Energy 52 (2010) 19–36.

  • 41. Kawashima N.K.S.H. Mechanism of zircaloy nodular corrosion J. Nucl. Mater. 119 (1983) 229–239.

  • 42. Likhanskii V.V. Evdokimov L.A. Effect of additives on the susceptibility of zirconium alloys to nodular corrosion. J. Nucl. Mater. 392 (2009) 447–452.

Journal information
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 92 92 20
PDF Downloads 70 70 13