An Influence of Factors of Flow Condition, Particle and Material Properties on Slurry Erosion Resistance

Open access

Abstract

The degradation of materials due to slurry erosion is the serious problem which occurs in the power industries. The paper presents actual knowledge about an influence of individual factors connected with flow conditions, particles and material properties on the slurry erosion resistance. Among the factors connected with operating conditions, an influence of impact angle, and velocity of impact, particle concertation and liquid temperature have been described. In case of the factors connected with solid particle properties, an influence of the size, shape and hardness have been discussed. In the part devoted to the impact of material properties, due to different types of materials, the issues of resistance to erosion of slurries related to the properties of steel, ceramics and polymers are discussed separately. In the paper has been shown that a change of any of mentioned factors causes a change in the erosion rate due to the synergistic effects that accompany to slurry degradation.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Al-Bukhaiti M. A. Ahmed S. M. Badran F. M. F. Emara K. M. Effect of impingement angle on slurry erosion behaviour and mechanisms of 1017 steel and high-chromium white cast iron. Wear 262 (2007) 1187–1198.

  • 2. Oka Y. I. Okamura K. Yoshida T. Practical estimation of erosion damage caused by solid particle impact: Part 1: Effects of impact parameters on a predictive equation. Wear 259 (2005) 95–101.

  • 3. Arora H. S. Grewal H. S. Singh H. Mukherjee S. Zirconium based bulk metallic glass-Better resistance to slurry erosion compared to hydroturbine steel. Wear 307 (2013) 28–34.

  • 4. Finnie I. Erosion of surfaces by solid particles. Wear 3 (1960) 87–103.

  • 5. Bitter J.G.A. A study of erosion phenomena part I. Wear 6 (1963) 5–21.

  • 6. Zbrowski A. Mizak W. Analiza systemów wykorzystywanych w badaniach uderzeniowego zużycia erozyjnego. Problemy eksploatacji 3 (2011) 235–250 (in Polish)

  • 7. Sinha S.L. Dewangan S.K. Sharma A. A review on particulate slurry erosive wear of industrial materials: In context with pipeline transportation of mineral−slurry. Particulate Science and Technology 35 (2017) 103–118.

  • 8. Grewal H. S. Agrawal A. Singh H. Design and development of high-velocity slurry erosion test rig using CFD. Journal of Materials Engineering and Performance 22 (2013) 152–161.

  • 9. Finnie I. Some reflections on the past and future of erosion. Wear 186–187 (1995) 1–10.

  • 10. Buszko M.H. Krella A.K. Slurry erosion – design of test devices. Advances in Materials Science 17 (2017) 5–17.

  • 11. Shitole P. P. Gawande S. H. Desale G. R. Nandre B. D. Effect of impacting particle kinetic energy on slurry erosion wear. Journal of Bio-and Tribo-Corrosion 1 (2015) 1–9.

  • 12. Desale G.R. Gandhi B.K. Jain S.C. Slurry erosion of ductile materials under normal impact condition. Wear 264 (2008) 322–330.

  • 13. Grewal H. S. Agrawal A. Singh H. Shollock B. A. Slurry erosion performance of Ni-Al2O3 based thermal-sprayed coatings: Effect of angle of impingement. Journal of Thermal Spray Technology 23 (2014) 389–401.

  • 14. Grewal H. S. Agrawal A. Singh H. Slurry erosion mechanism of hydroturbine steel: Effect of operating parameters. Tribolology Letters 52 (2013) 287–303.

  • 15. Lathabai S. Pender D. C. Microstructural influence in slurry erosion of ceramics. Wear 189 (1995) 122–135.

  • 16. Thakur L. Arora N. A comparative study on slurry and dry erosion behaviour of HVOF sprayed WC-CoCr coatings. Wear 303 (2013).

  • 17. Paul C.P. Gandhi B.K. Bhargava P. Dwivedi D.K. Kukreja L.M. Cobalt-Free Laser Cladding on AISI Type 316L Stainless Steel for improved cavitation and slurry erosion Wear Behavior. Journal of Materials Engineering and Performance 23 (2014) 4463–4471.

  • 18. Hejwowski T. Nowoczesne powłoki nakładane cieplnie odporne na zużycie ścierne i erozyjne. Politechnika Lubelska Lublin 2013 (in Polish).

  • 19. Clark H. M. Hawthorne H. M. Xie Y. Wear rates and specific energies of some ceramic cermet and metallic coatings determined in the Coriolis erosion tester. Wear 233–235 (1999) 319–327.

  • 20. Santa J.F. Baena J.C. Toro A. Slurry erosion of thermal spray coatings and stainless steels for hydraulic machinery. Wear 263 (2007) 258–264.

  • 21. Santa J.F. Espitia L.A. Blanco J.A. Romo S.A. Toro A. Slurry and cavitation erosion resistance of thermal spray coatings. Wear 267 (2009) 160–167.

  • 22. Mann B.S. High-energy particle impact wear resistance of hard coatings and their application in hydroturbines. Wear 237 (2000) 140–146.

  • 23. Mann B.S. Arya V. Abrasive and erosive wear characteristics of plasma nitriding and HVOF coatings: Their application in hydro turbines. Wear 249 (2001) 354–360.

  • 24. Romo S.A. Santa J.F. Giraldo J.E. Toro A. Cavitation and high-velocity slurry erosion resistance of welded Stellite 6 alloy. Tribology International 47 (2012) 16–24.

  • 25. Hutchings I.M. Tribology: Friction and Wear of Engineering Materials. Edward Arnold London 1992.

  • 26. Thakur P.A. Khairnar H.S. Deore E.R. More S.R. Development of slurry jet erosion tester to simulate the erosion wear due to solid-liquid mixture. International Journal of Novel Research in Engineering and Science 2 (2015) 14–20.

  • 27. Saleh B. Ahmed S.M. Slurry erosion-corrosion of carburized AISI 5117 steel. Tribolology Letters 51 (2013) 135–142.

  • 28. Zhao H.X. Goto H. Matsumura M. Takahashi T. Yamamoto M. Slurry erosion properties of ceramic coatings. Wear 233–235 (1999) 608–614.

  • 29. Fang Q. Xu H. Sidky P.S. Hocking M.G. Erosion of ceramic materials by a sand/water slurry jet. Wear 224 (1999) 183–193.

  • 30. Laguna-Camacho J.R. Marquina-Chávez A. Méndez-Méndez J.V. Vite-Torres M. Gallardo-Hernández E.A. Solid particle erosion of AISI 304 316 and 420 stainless steels. Wear 301 (2013) 398–405.

  • 31. Basha S. S. Periasamy V. M. Kamaraj M. Slurry erosion resistance of laser-modified 16Cr – 5Ni stainless steel. International Journal of ChemTech Research 6 (2014) 691–704.

  • 32. de Bree S. Rosenbrand W. de Gee A. On the erosion resistance in water-sand mixtures of steels for application in slurry pipelines. Proc. 8th Int. Conf. Hydraulic Transport of Solids in Pipes BHRA Fluid Engineering Johannesburg 1982 Paper C3.

  • 33. Fuyan L. Hesheng S. The effect of impingement angle on slurry erosion. Wear 141 (1991) 279–289.

  • 34. Gandhi B.K. Singh S.N. Seshadri V. Study of the parametric dependence of erosion wear for the parallel flow of solid-liquid mixtures. Tribology International 32 (1999) 275–282.

  • 35. Gupta R. Singh S. N. Sehadri V. Prediction of uneven wear in a slurry pipeline on the basis of measurements in a pot tester. Wear 184 (1995) 169–178.

  • 36. Lin F. Y. Shao H. S. Effect of impact velocity on slurry erosion and a new design of a slurry erosion tester. Wear 143 (1991) 231–240.

  • 37. Thapa B. Sand erosion in hydraulic machinery. PhD Thesis Norwegian University of Science and Technology (NTNU) 2004.

  • 38. Levy A.V. Yau P. Erosion of steels in liquid slurries. Wear 98 (1984) 163–182.

  • 39. Nguyen Q. B. Lim C.Y.H. Nguyen V.B. Wan Y.M. Nai B. Zhang Y.W. Gupta M. Slurry erosion characteristics and erosion mechanisms of stainless steel. Tribology International 79 (2014) 1–7.

  • 40. Hawthorne H.M. Some Coriolis slurry erosion test developments. Tribology International 35 (2002) 625–630.

  • 41. Clark H.M. Tuzson J. Wong K.K. Measurements of specific energies for erosive wear using a Coriolis erosion tester. Wear 241 (2000) 1–9.

  • 42. Singh G. Virdi R. L. Goyal K. Experimental investigation of slurry erosion behaviour of hard faced AISI 316L Stainless Steel. Universal Journal of Mechanical Engineering 3 (2015) 52–56.

  • 43. Grewal H. S. Arora H. S. Agrawal A. Singh H. Mukherjee S. Slurry erosion of thermal spray coatings: Effect of sand concentration. Procedia Engineering 68 (2013) 484–490.

  • 44. Turenne S. Fiset M. Masounave J. The effect of sand concentration on the erosion of materials by a slurry jet. Wear 133 (1989) 95–106.

  • 45. Prasad B.K. Jha A.K. Modi O.P. Yegneswaran A.H. Effect of sand concentration in the medium and travel distance and speed on the slurry wear response of a zinc-based alloy alumina particle composite. Tribolology Letters 17 (2004) 301–304.

  • 46. Burnett A.J. De Silva S.R. Reed A.R. Comparisons between “sand blast” and “centripetal effect accelerator” type erosion testers. Wear 186–187 (1995) 168–178.

  • 47. Kleis. I Kulu P. Solid Particle Erosion. [In] Influence of Particle Concentration. Springer-Verlag London Limited 2008 24–27.

  • 48. Bong E.Y. Parthasarathy R. Wu J. Eshtiaghi N. Effect of baffles on solid-liquid mass transfer coefficient in high solid concentration mixing. Chemeca 2012: Quality of life through chemical engineering Wellington New Zealand 2012 1870–1880.

  • 49. Shehadeh M. Anany M. Saqr K.M. Hassan I. Experimental investigation of erosion corrosion phenomena in a steel fitting due to plain and slurry seawater flow. International Journal of Mechanical and Materials Engineering 9 (2014) 1–9.

  • 50. Dabirian R. Mohan R. Shoham O. Kouba G. Critical sand deposition velocity for gas liquid stratified flow in horizontal pipes. Journal of Natural Gas Science and Engineering 33 (2016) 527–536.

  • 51. Bartosik A. Influence of coarse-dispersive solid phase on the ‘particles–wall’ shear stress in turbulent slurry flow with high solid concentration. The Archive of Mechanical Engineering 57 (2010) 45–68.

  • 52. Bjordal M. Bardal E. Rogne T. Eggen T.G. Combined erosion and corrosion of thermal sprayed WC and CrC coatings. Surface and Coatings Technology 70 (1995) 215–220.

  • 53. Padhy M.K. Saini R.P. Effect of size and concentration of silt particles on erosion of Pelton turbine buckets. Energy 34 (2009) 1477–1483.

  • 54. Elkholy A. Prediction of abrasion wear for slurry pump materials. Wear 84 (1983) 39–49.

  • 55. Lindgren M. Perolainen J. Slurry pot investigation of the influence of erodent characteristics on the erosion resistance of austenitic and duplex stainless steel grades. Wear 319 (2014) 38–48.

  • 56. Zitoun K. Sastry S. Guezennec Y. Investigation of three dimensional interstitial velocity solids motion and orientation in solid–liquid flow using particle tracking velocimetry. International Journal of Multiphase Flow 27 (2001) 1397–1414.

  • 57. Yang J.-Z. Fang M.-H. Zhao-Hui Huang Z.-H. Hu X.-Z. Liu Y.-G. Sun H.-R. Huang J.-T. Li X.-Ch. Solid particle impact erosion of alumina-based refractories at elevated temperatures. Journal of the European Ceramic Society 32 (2012) 283–289.

  • 58. Sundararajan G. Roy M. Solid particle erosion behavior of metallic materials at room and elevated temperatures. Tribology International 30 (1997) 339–359.

  • 59. Wang X. Fang M. Zhang L.-C. Ding H. Liu Y.-G. Huang Z. Huang S. Yang J. Solid particle erosion of alumina ceramics at elevated temperature. Materials Chemistry and Physics 139 (2013) 765–769.

  • 60. Sarlin E. Lindgren M. Suihkonen R. Siljander S. Kakkonen M. Vuorinen J. High-temperature slurry erosion of vinylester matrix composites – The effect of test parameters. Wear 328–329 (2015) 488–497.

  • 61. Stack M.M. Pungwiwat N. Slurry erosion of metallics polymers and ceramics: particle size effects. Materials Science and Technology 15 (1999) 337–344.

  • 62. Gandhi B.K. Borse S.V. Nominal particle size of multi-sized particulate slurries for evaluation of erosion wear and effect of fine particles. Wear 257 (2004) 73–79.

  • 63. Desale G.R. Gandhi B.K. Jain S.C. Particle size effects on the slurry erosion of aluminium alloy (AA 6063). Wear 266 (2009) 1066–1071.

  • 64. Sheldon G.L. Finnie I. On the ductile behaviour of nominally brittle materials during erosive cutting. Journal of Engineering for Industry 88 (1966) 387–392.

  • 65. Stachowiak G.W. Batchelor A.W. Engineering Tribology (fourth edition). [In] Abrasive Erosive and Cavitation Wear. Elsevier Butterworth-Heinemann 2014 525–576.

  • 66. Lynn R.S. Wong K.K. Clark H.M. On the particle size effect in slurry erosion. Wear 149 (1991) 55–71.

  • 67. Stachowiak G.W. Particle angularity and its relationship to abrasive and erosive wear. Wear 241 (2000) 214–219.

  • 68. Bahadur S. Badruddin R. Erodent particle characterization and the effect of particle size and shape on erosion. Wear 138 (1990) 189–208.

  • 69. Desale G.R. Gandhi B.K. Jain S.C. Effect of physical properties of solid particle on erosion wear of ductile materials. Porc. of World Tribology Congress III Washington D.C. USA 2005 149–150.

  • 70. Raadnui S. Wear particle analysis - Utilization of quantitative computer image analysis: A review. Tribology International 38 (2005) 871–878.

  • 71. Bouwman A.M. Bosma J.C. Vonk P. Wesselingh J. (Hans) A. Frijlink H.W. Which shape factor(s) best describe granules?. Powder Technology 146 (2004) 66–72.

  • 72. Roylance B.J. Raadnui S. The morphological attributes identifying wear mechanisms of wear particles their role in identifyinf wear mechanisms. Wear 175 (1994) 115–12

  • 73. Cox E.P. A method of assigning numerical and percentage values to the degree of roundnedd of sand grains. Journal of Palentology 1 (1927) 179–183.

  • 74. Al-Bukhaiti M.A. Abouel-Kasem A. Emara K.M. Ahmed S.M. Particle shape and size effects on slurry erosion of AISI 5117 steels. Journal of Tribology 138 (2016).

  • 75. Chen Q. Li D.Y. Computer simulation of solid particle erosion. Wear 254 (2003) 203–210.

  • 76. Singh J. Kumar S. Mohapatra S.K Kumar S. Shape simulation of solid particles by digital interpretations of scanning electron micrographs using IPA technique. Materials Today: Proceedings 5 (2018) 17786–17791.

  • 77. Lathabai S. Effect of grain size on the slurry erosive wear of Ce-TZP ceramics. Scripta mater. 43 (2000) 465–470.

  • 78. Shetty D.K. Wright I.G. Stropki J.T. Slurry erosion of WC-Co cermets and ceramics. ASLE Transactions 28 (1985) 123–133.

  • 79. Wood R.J.K. Mellor B.G. Binfield M.L. Sand erosion performance of detonation gun applied tungsten carbide/cobalt-chromium coatings. Wear 211 (1997) 70–83.

  • 80. Feng Z. Ball A. The erosion of four materials using seven erodents-towards an understanding. Wear 233–235 (1999) 674–684.

  • 81. Wang Y-F. Yang Z-G. Finite element model of erosive wear on ductile and brittle materials. Wear 265 (2008) 871–878.

  • 82. Javaheri V. Porter D. KuokkalaV-T. Slurry erosion of steel – Review of tests mechanisms and materials. Wear 408–409 (2018) 248–273.

  • 83. Mellali M. Grimaud A. Leger A.C. Fauchais P. Lu J. Alumina grit blasting parameters for surface preparation in the Plasma Spraying Operation. Journal of Thermal Spray Technology 6 (1992) 217–227.

  • 84. Syamsundar C. Chatterjee D. Kamaraj M. Maiti A.K. Erosion Characteristics of Nanoparticle-Reinforced Polyurethane Coatings on Stainless Steel Substrate. J. Mater. Eng. Perform. 24 (2015) 1391–1405.

  • 85. Shipway P.H. Hutchings I.M. The role of particle properties in the erosion of brittle materials. Wear 193 (1996) 105–113.

  • 86. Tsai W. Humphrey J.A.C. Cornet I. Levy A.V. Experimental measurement of accelerated erosion in a slurry pot tester. Wear 68 (1981) 289–303.

  • 87. Levy A.V. The solid particle erosion behavior of steel as a function of microstructure. Wear 68 (1981) 269–287.

  • 88. Gadhikar A.A. Sharma A. Goel D.B. Sharma C.P. Effect of carbides on erosion resistance of 23-8-N steel. Bull. Mater. Sci. 37 (2014) 315–319.

  • 89. Kumar A. Sharma A. Goel S.K. Effect of heat treatment on microstructure mechanical properties and erosion resistance of cast 21-4-N nitronic steel. SOJ Mater. Sci. Eng. 4 (2016) 1–5.

  • 90. Meng H.C. Ludema K.C. Wear models and predictive equations: their form and content. Wear 181–183 (1995) 443–457.

  • 91. Wang G.R. Chu F. Tao S.Y. Jiang L. Zhu H. Optimization design for throttle valve of managed pressure drilling based on CFD erosion simulation and response surface methodology. Wear 338–339 (2015) 114–121.

  • 92. Zhang J. Kang J. Fan J. Gao J. Research on erosion wear of high-pressure pipes during hydraulic fracturing slurry flow. Journal of Loss Prevention in the Process Industries 43 (2016) 438–448.

  • 93. Singh J. Singh J.P. Singh M. Szala M. Computational analysis of solid particle-erosion produced by bottom ash slurry in 90° elbow. CMES’18 MATEC Web Conf. 252 (2019) 04008.

  • 94. Hassan M.A. El-Sharief M.A. Aboul-Kasem A. Ramesh S. Purbolaksono J.A fuzzy model for evaluation and prediction of slurry erosion of 5127 steels. Materials and Design 39 (2012) 186–191.

  • 95. Hernik B. Pronobis M. Wejkowski R. Wojnar W. Experimental verification of a CFD model intended for the determination of restitution coefficients used in erosion modelling. WTiUE 2016 E3S Web of Conferences 13 (2017) 05001.

  • 96. Nicholls J.R. Coatings and hardfacing alloys for corrosion and wear resistance in diesel engines. Mater. Sci. Technol. 10 (1994) 1002–1012.

  • 97. Bhushan B. Fundamentals of Tribology and Bridging the Gab between Macro- and Micro/Nanoscale. B. Bhushan [ed.] Kluwer Academic Publishers Netherlands 2014.

  • 98. Carter C.B. Norton M.G. Ceramic Materials. Springer New York New York 2013.

  • 99. Preece C.M. Macmilla N.H. Erosion. Ann. Rev. Mater. Sci. 7 (1977) 95–121.

  • 100. Bhandari S. Singh H. Kumar H. Rastogi V. Slurry erosion performance study of detonation gun-sprayed WC-10Co-4Cr coatings on CF8M steel under hydro-accelerated conditions. J. Therm. Spray Technol. 21 (2012) 1054–1064.

  • 101. Quinn T.F.J. The role of wear in the failure of common tribosystems. Wear 100 (1984) 399–436.

  • 102. Larson J.M. Jenkins L.F. Narasimhan S.L. Belmore J.E. Engine Valves-Design and Material Evolution. J. Eng. Gas Turbines Power 109 (1987) 355–361.

  • 103. Zahavi J. Schmitt G.F. Solid particle erosion of polymeric coatings. Wear 71 (1981) 191–210.

  • 104. Lima C.R.C. Mojena M.A.R. Della Rovere C.A. de Souza N.F.C. Fals H.D.C. Slurry erosion and corrosion behavior of some engineering polymers applied by low-pressure flame spray. J. Mater. Eng. Perform. 25 (2016) 4911–4918.

Search
Journal information
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 101 101 26
PDF Downloads 82 82 19