Analysis of Bone Wedge Dimensions Selection Methods in High Tibial Osteotomy

Open access


The article presents the analysis of methods for selecting dimensions of bone wedge for high tibial osteotomy. The existing methods are described along with the procedure. In the following paragraphs, deficiencies in the selection of bone wedge dimensions and global trends in this field have been demonstrated. Based on the numerical analysis, the problem appearing in the wrong choice of bone wedge dimensions was illustrated.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Franz A. Joseph L. Mayer C. Harmsen JF. Schrumpf H. Fröbel J. Ostapczuk MS. Krauspe R. Zilkens C. The role of oxidative and nitrosative stress in the pathology of osteoarthritis: Novel candidate biomarkers for quantification of degenerative changes in the knee joint. Orthopaedic Reviews 10:7460 (2018) 1–7.

  • 2. Allen K. D. Golightly Y. M. Epidemiology of osteoarthritis: state of the evidence. Current opinion in Rheumatology 27(3) (2015) 276–283.

  • 3. Kumagai K. Akamatsu Y. Kobayashi H. Kusayama Y. Koshino T. Saito T. Factors affecting cartilage repair after medial opening-wedge high tibial osteotomy. Knee Surgery Sports Traumatology Arthroscopy 25(3) (2017) 779–784.

  • 4. Saini M. Singh Y. Arora P. Arora V. Jain K. Implant biomaterials: A comprehensive review. World Journal of Clinical Cases 16; 3(1) (2015) 52–57.

  • 5. Kongcharoensombat W. Clinical Outcome of Medial Opening Wedge Osteotomy with T-Locking Plate: Two Years Follow-Up. Malaysian Orthopaedic Journal 8(1) (2014) 50–55.

  • 6. Diffo Kaze A. Maas S. Waldmann D. Zilian A. Dueck K. Pape D. Biomechanical properties of five different currently used implants for open-wedge high tibial osteotomy. Journal of Experimental Orthopaedics 2:14 (2015) 1–17.

  • 7. DePuy Synthes Trauma a division of Synthes GmbH.: For Medial High Tibial Osteotomies TomoFix Medial High Tibial Plate (MHT). Oberdorf 2017.

  • 8. Koh Y-G. Son J. Kwang Kwona S. Jeong Kim H. Kang K-T. Biomechanical evaluation of opening-wedge high tibial osteotomy with composite materials using finite-element analysis. The Knee 25:6 (2018) 977–987.

  • 9. Mahmoud D. Elbestawi M. A. Lattice Structures and Functionally Graded Materials Applications in Additive Manufacturing of Orthopaedic Implants: A Review. Journal of Manufacturing and Materials Processing 1(2) 13 (2017) 1–19.

  • 10. Pal Singh A. Knee joint anatomy (source: on 07.04.2018).

  • 11. Gerster J.C. Landry M. Duvoisin B. Rappoport G. Computed tomography of the knee joint as an indicator of intraarticular tophi in gout. Arthritis & Rheumatology 39(8):1406–9 (1996).

  • 12. Hombach-Klonisch S. Klonisch T. Peeler J. Sobotta Clinical Atlas of Human Anatomy one volume English. Urban & Fischer (2019).

  • 13. Sergiew M. Osteotomia rozwierająca piszczeli w leczeniu choroby zwyrodnieniowej stawu kolanowego PhD thesis Uniwersytet Medyczny im. Karola Marcinkowskiego w Poznaniu Poznań 2010.

  • 14. Lobenhoffer P. Agneskirchner J.D. Improvements in surgical technique of valgus high tibial osteotomy. Knee Surgery Sports Traumatology Arthroscopy 11(3) (2003) 132–8.

  • 15. Rao A. Erickson BJ. Cvetanovich GL. Yanke AB. Bach BR. Jr. Cole BJ. The Meniscus-Deficient Knee: Biomechanics Evaluation and Treatment Options. The Orthopaedic Journal of Sports Medicine 3(10) (2015) 1–14.

  • 16. Cavallo M. Sayyed-Hosseinian SH. Parma A. Buda R. Mosca M. Giannini S. Combination of High Tibial Osteotomy and Autologous Bone Marrow Derived Cell Implantation in Early Osteoarthritis of Knee: A Preliminary Study. The Archives of Bone and Joint Surgery 6(2) (2018) 112–118.

  • 17. Canale S.T. Campbell’s Operative Orthopaedics. Mosby; 9th edition1999.

  • 18. Hagstedt B. Norman O. Olsson T.H. Tjörnstrand B. Technical Accuracy in High Tibial Osteotomy for Gonarthrosis Acta Orthopaedica Scandinavica 51:1–6 (1980) 963–970.

  • 19. Paley D. Herzenberg J.E. Tetsworth K. McKie J. Bhave A. Deformity planning for frontal and sagittal plane corrective osteotomies. Orthopaedic Clinics of North America 25(3) (1994) 425–465.

  • 20. Paley D. Tetsworth K. Mechanical Axis Deviation of the Lower Limbs: Preoperative Planning of Uniapical Angular Deformities of the Tibia or Femur. Clinical Orthopaedics and Related Research 280(280) (1992) 65–71.

  • 21. Seo S. Kim O-G. Seo J-H. Kim D-H. Kim Y-G. Lee I-S. Complications and Short-Term Outcomes of Medial Opening Wedge High Tibial Osteotomy Using a Locking Plate for Medial Osteoarthritis of the Knee. Knee Surgery & Related Research 28(4) (2016) 289–296.

  • 22. Pal S. Design of Artificial Human Joints & Organs. Springer 2014 23–40.

  • 23. Balijepalli S.K. Donnini R. Kaciulis S. Montanari R. Varone A. Young’s Modulus Profile in Kolsterized AISI 316L Steel. Materials Science Forum 762:183 (2013).

  • 24. Human knee joint model from CT scan data (source: availability on 05.04.2018).

  • 25. Lai Y-S. Chen W-C. Huang C-H. Cheng C-K. Chan K-K. Chang T-K. The Effect of Graft Strength on Knee Laxity and Graft In-Situ Forces after Posterior Cruciate Ligament Reconstruction. PLoS ONE 10(5) (2015).

  • 26. Rao J. Y. Ashman R.B. Turner C.H. Young's modulus of trabecular and cortical bone material: Ultrasonic and microtensile measurements. Journal of Biomechanics 26 (2) (1993) 111–119.

  • 27. Teichtahl A. Wluka A. Wijethilake P. Wang Y. Ghasem-Zadeh A. Cicuttini F. Wolff’s law in action: a mechanism for early knee osteoarthritis. Arthritis Research & Therapy 17(1) (2015) 1–9.

  • 28. Mirzaali M. J. Mussi V. Vena P. Libonati F. Vergani L. Strano M. Mimicking the loading adaptation of bone microstructure with aluminum foams. Materials & Design 126 (15) (2017) 207–218.

  • 29. Myrnerts R. Optimal Correction in High Tibial Osteotomy for Varus Deformity. Acta Orthopaedica Scandinavica 51 (4) 1–6 (1980) 689–693.

  • 30. Arthrex iBalance® HTO System Surgical Technique. Naples 2018.

Journal information
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 87 87 18
PDF Downloads 77 77 6