Effect of The Degree of Cold Work and Sensitization Time on Intergranular Corrosion Behavior in Austenitic Stainless Steel

Open access


Present paper deals with the influence of a wide range of cold rolling (5, 10, 15 and maximum 40% cold deformation) and the sensitization time (aging at 700°C for 0.12, 0.5, 1, 4, 16 and 32 hours) on intergranular corrosion (IGC). Intergranular corrosion of commercial stainless steel type X6CrNiTi18-10 (1.4541, AISI 321) is frequently observed in several process environments. These localized attacks are normally attributed to the carbide precipitation and concomitant depletion of chromium near grain boundary due to steel exposure to sensitization temperature. Such undesirable microchemistry is expected to be changed further if the material undergoes deformation prior to sensitization. The consequences of deformation on IGC have been investigated by using EN ISO 3651-1methods (Huey test – Corrosion test in nitric acid medium by measurement of loss in mass). Introducing deformation to the investigated stainless steel seems to change the kinetics of carbide precipitation M23C6 and thereby changes it resistance to IGC. Cold deformation before sensitization reduces the intensity of intergranular corrosion of this steel. The deformed structure created during the cold work process, numerous slip planes and the twins boundaries are just like the grain boundaries and the places where the chromium carbides preferentially precipitates. Due to the more evenly occurring precipitation processes within the whole deformed grains, there is no phenomenon of local grain boundary carbide precipitation, and thus there is no decrease in the resistance of this steel to intergranular corrosion. The assessment of the degree of intergranular corrosion was based on the measurement of mass loss and observation of corroded surfaces on optical and electron transmission and scanning microscopes.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Haraszti F. and Kovacs T.: IOP Conf. Series: Materials Science and Engineering. 175 (2017) (http://iopscience.iop.org/1757-899X/175/1/012048).

  • 2. Singh R. Dey P.D. Kumar A. Das S.K. Kumar R. and Chattoraj I.: Intergranular corrosion of deformed SS304. NSCP (2001) 29-33.

  • 3. Li S.X. He Y. Yu S. Zhang P.: Evaluation of the effect of grain size on chromium carbide precipitation and intergranular corrosion of 316L stainless steel. Corrosion Science 66 (2013) 211–216.

  • 4. Zhao H. Zhang Z. Zhang H. Hu J. Li J.: Effect of aging time on intergranular corrosion behavior of a newly developed LDX 2404 lean duplex stainless steel. Journal of Alloys and Compounds 672 (2016) 147-154.

  • 5. PN–EN ISO 3651-1:2004. Oznaczanie odporności na korozję międzykrystaliczną stali odpornych na korozję. Część 1: Stale odporne na korozję austenityczne i ferrytyczno-austenityczne (duplex). Badanie korozyjne w środowisku kwasu azotowego (V) przez pomiar ubytku masy (próba Hueya).

  • 6. Luo H. Sub H. Yinga G. Dong C. Li X.: Effect of cold deformation on the electrochemical behaviour of 304L stainless steel in contaminated sulfuric acid environment. Applied Surface Science 425 (2017) 628–638.

  • 7. Zhang L. Szpunar L. Basu R. Dong J. Zhang M.: Influence of cold deformation on the corrosion behavior of Ni–Fe–Cr-alloy 028. Journal of Alloys and Compounds 616 (2014) 235–242.

  • 8. Terada M. Saiki M. Costa I. Padilha A.F.: Microstructure and intergranular corrosion of the austenitic stainless steel 1.4970. Journal of Nuclear Materials 358 (2006) 40–46.

  • 9. Kosec L. Savli S. Kozuh S. et al.: Transformation of austenite during isothermal annealing at 600-900°C for heat-resistant stainless steel. Journal of Alloys and Compounds 567 (2013) 59-64.

  • 10. Sahlaoui H. Sidhom H. Philibert J.: Prediction of chromium depleted-zone evolution during aging of Ni-Cr-Fe alloys. Acta Materialia 50 (2002) 1383-1392.

  • 11. Li J. Liang T. Wang C. Guo T.: Influence of sensitization on passive films in AISI 2205 duplex stainless steel. Journal of Alloys and Compounds 658 (2016) 657-662.

  • 12. Zhang Z. Zhao H Zhang H. Yu Z. Hu J. He L. Li J.: Effect of isothermal aging on the pitting corrosion resistance of LDX 2404 duplex stainless steel based on electrochemical detection. Corrosion Science 93 (2015) 120-125.

  • 13. Zhang W. Frankel G.S.: Transitions between pitting and intergranular corrosion in AA2024. Electrochimica Acta 48 (2003) 1193-1210.

  • 14. Gorhe D.D. Raja K.S. Namjoshi S.A. Radmilovic V. Tolly A. Jones D.A.: Electrochemical methods to detect susceptibility of Ni-Cr-Mo-W alloy to intergranular corrosion. Metallurgical and Materials Transactions A 36 (2005) 1153-1167.

  • 15. Zhang Z Zhang H Han D He L. Jiang Y. Li J.: Precipitation evolution in duplex stainless steel during isothermal aging at 700°C. Materials Science and Technology 30 (2014) 451-457.

  • 16. Arutunow A. Darowicki K.: DEIS assessment of AISI 304 stainless steel dissolution process in conditions of intergranular corrosion. Electrochimica Acta 53 (2008) 4387-4395.

  • 17. Arutunow A. Darowicki K.: DEIS evaluation of the relative effective surface area of AISI 304 stainless steel dissolution process in conditions of intergranular corrosion. Electrochimica Acta 54 (2009) 1034-1041.

Journal information
Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 141 141 6
PDF Downloads 135 135 10