Nanotubular Oxide Layers and Hydroxyapatite Coatings on Porous Titanium Alloy Ti13Nb13Zr

Open access

Abstract

The surface condition of an implant has a significant impact on response occurring at the implant-biosystem border. The knowledge of physical-chemical and biological processes allows for targeted modification of biomaterials to induce a specified response of a tissue. The present research was aimed at development of technology composing of obtaining the nanotube oxide layers on a porous titanium alloy Ti13Nb13Zr, followed by the deposition of phosphate coating. The porous substrate (porosity about 50%) was prepared by a selective laser melting of the Ti13Nb13Zr powder with the SLM Realizer 100 equipment. The nanotubular oxide layers were fabricated by electrochemical oxidation in H3PO4 + 0.3% HF mixture for 30 min. at a constant voltage of 20V. The calcium phosphate coatings were formed by the electrochemically assisted deposition (ECAD). The presence of nanotubular oxide layers with their internal diameters ranging from 30 to 100 nm was observed by SEM (JEOL JSM-7600F). The nanotubes have dimensions that facilitated the deposition of hydroxyapatite.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Huang J. Zhang X. Yan W. Chen Z. Shuai X. Wang A. Wang Y.: Nanotubular topography enhances the bioactivity of titanium implants. Nanomed. Nanotech. Biol. and Med. 13 (2017) 1913–1923.

  • 2. Liu X. Chu P.K. Ding C.: Surface modification of titanium titanium alloys and related materials for biomedical applications. Mater. Sci. Eng. R. 47 (2004) 49–121.

  • 3. Sarraf M. Zalnezhad E. Bushroa A.R. Hamoud A.M.S. Rafieerad A.R. Nasiri-Tabrizi B.: Effect of microstructural evolution on wettability and tribological behavior of TiO2 nanotubular arrays coated on Ti-6Al-4V. Ceram. Int. 41 (2015) 7952-7962.

  • 4. Briggs E.P. Wapole A.R. Wilshaw P.R. Karlsson M. Palsgard E.: Formation of highly adherent nano-porous alumina on Ti-based substrates: A novel bone implant coating. J. Mater. Sc. Mat. Med. 15 (2004) 1021-1029.

  • 5. Yang J. Zhang K. Que K. Hou S. Chen Z. Li Y. Wang Y. Song Y. Guam B. Zhang W. Zhu D. Li Ch. Wang D. Geng P.: Surface modification of titanium with hydroxyapatite layer induced by phase-transited lysozyme coating. Mater. Sci. Eng. C 92 (2018) 206-215.

  • 6. Seramak T. Serbiński W. Zieliński A.: Formation of porous structure of the metallic materials used on bone implants. Solid State Phenom. 183 (2012) 155-162.

  • 7. Jakubowicz J.: Formation of porous TiOx biomaterials in H3PO4 electrolytes. Electrochem. Comm. 10 (2008) 735-739.

  • 8. Long M. Rack H.J.: Titanium alloys in total joint replacement - a materials science perespective. Biomater. 19 (1998) 1621-1639

  • 9. Świeczko-Żurek B. Bartmański M.: Investigations of titanium implants covered with hydroxyapatite layer. Adv. Mater. Sci. 16 (2016) 78-86.

  • 10. Ossowska A. Sobieszczyk S. Supernak M. Zielinski A.: Morphology and properties of nanotubular oxide layer on the Ti-13Nb-13Zr alloy. Surf. Coat. Techn. 258 (2014) 1239-1248.

  • 11. Krupa D. Baszkiewicz J. Sobczak J.W. Bliński A. Barcz A.: Modyfing the properties of titanium surface with the aim of improving its bioactivity and corrosion resistance. J. Mater. Proc. Techn. 143-144 (2003) 158-163.

  • 12. Vanzillotta P.S. Sader M.S. Bastos I.N. de Almeida Soares G.: Improvement on in vitro titanium bioactivity by three different surface treatments. Dental Mater. 22 (2006) 275-282.

  • 13. Lewandowska M. Roguska A. Pisarek M. Polk B. Janik-Czachor M. Kurzydłowski K.J.: Morfology and chemical characterization on Ti surface modified for biomedical applications. Biomolec. Eng. 24 (2007) 438-444.

  • 14. Zieliński A. Sobieszczyk S. Seramak T. Serbiński W. Świeczko-Żurek B. Ossowska A.: Biocompatibility and bioactivity of load-bearing metallic implants. Adv. Mater. Sci. 10 (2010) 21-3.

  • 15. Jażdżewska M. Majkowska-Marzec B.: Hydroxyapatite deposition on the laser modified Ti13Nb13Zr alloy. Adv. Mater. Sci. 17 (2017) 5-13.

  • 16. Crawford G. Chawla N. Das K. Bose S. Bandyopadhyay A.: Microstructure and deformation behavior of biocompatible TiO2 nanotubes on titanium substrate. Acta Biomater. 3 (2007) 359-367.

  • 17. Prida V.M. Manova E. Vega V. Hernandez-Velez M. Aranda P. Pirota K.R. Vazquez M. Ruiz-Hitzky E.: Temperature influence on the anodic growth of self-aligned titanium dioxide nanotubes arrays. J. Magn. Magn. Mater. 316 (2007) 110-113.

  • 18. Beranek R. Hildebrand H. Schmuki P.: Self-organized porous titanium prepared in H2SO4/HF electrolytes. Electrochem. Solid State Lett. 6 (2003) B12-B14.

  • 19. Raja K.S. Misra M. Paramaguru K.: Formation of self-ordered nano-tubular structure of anodic oxide layer on titanium. Electrochim. Acta 51 (2005) 154-165.

  • 20. Mor G.K. Varghese O.K. Paulose M. Mukherjee N. Grimes C.A.: Fabrication of tapered conical-shaped titanium nanotubes. J. Mater. Res. 18 (2003) 2588-2593.

Search
Journal information
Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 229 229 11
PDF Downloads 160 160 11