SEM, EDS, and XPS Characterization of Coatings Obtained on Titanium During AC Plasma Electrolytic Process Enriched in Magnesium

Open access

Abstract

Plasma Electrolytic Oxidation (PEO) known also as Micro Arc Oxidation (MAO) process is widely used to fabricate porous coatings on titanium and its alloys mainly in water- and acid-based solutions to different applications, e.g. in biomaterials, catalysts, and sensors. In the present paper, the SEM, EDS, and XPS results of porous coatings obtained by PEO treatment on titanium in electrolytes based on concentrated phosphoric H3PO4 acid with calcium nitrate tetrahydrate Ca(NO3)2·4H2O, or magnesium nitrate hexahydrate Mg(NO3)2·6H2O, or zinc nitrate hexahydrate Zn(NO3)2·6H2O for 3 minutes at 200 Vpp (peak to peak) with frequency of 50 Hz, are presented. Based on EDS results, the Ca/P, Mg/P, and Zn/P ratios, which equal to 0.95, 0.176, and 0.231, respectively, were found out. The XPS studies of the top 10 nm of the porous layer clearly indicate that it contains mainly phosphates (PO43− and/or HPO42− and/or H2PO4, and/or P2O74−) with titanium (Ti4+) and calcium (Ca2+) or magnesium (Mg2+), or zinc (Zn2+).

1. Rokosz K., Hryniewicz T., Simon F., Rzadkiewicz S.: Comparative XPS analysis of passive layers composition formed on AISI 304 L SS after standard and high-current density electropolishing. Surf. Interface Analysis 47 (2015), 87–92.

2. Rokosz K., Lahtinen J., Hryniewicz T., Rzadkiewicz S.: XPS depth profiling analysis of passive surface layers formed on austenitic AISI 304L and AISI 316L SS after high-current-density electropolishing. Surface and Coatings Technology 276 (2015), 516-520.

3. Rokosz K., Hryniewicz T., Raaen S.: Cr/Fe ratio by XPS spectra of magnetoelectropolished AISI 316L SS fitted by Gaussian-Lorentzian shape lines. Tehnicki Vjesnik-Technical Gazette 21(3) (2014), 533-538.

4. Hryniewicz T., Rokosz K., Rokicki R., Prima F.: Nanoindentation and XPS Studies of Titanium TNZ Alloy after Electrochemical Polishing in a Magnetic Field. Materials. 8 (2015), 205-215.

5. Aliasghari S., Plasma Electrolytic Oxidation of Titanium, PhD Thesis of Faculty of Engineering and Physical Sciences, The University of Manchester School of Materials, 2014, 223 pages.

6. Gowtham S., Arunnellaiappan T., Rameshbabu N.: An investigation on pulsed DC plasma electrolytic oxidation of cp-Ti and its corrosion behaviour in simulated body fluid. Surf. Coat. Technol. 301 (2016), 63-73.

7. Wang Y., Jiang B., Lei T., Guo L.: Dependence of growth features of microarc oxidation coatings of titanium alloy on control modes of alternate pulse. Materials Letters 58 (2004), 1907-1911.

8. Simka W., Sadowski A., Warczak M., Iwaniak A., Dercz G., Michalska J., Maciej A.: Modification of titanium oxide layer by calcium and phosphorus. Electrochimica Acta 56(24) (2011), 8962-8968.

9. Krząkala A., Mlynski J., Dercz G., Michalska J., Maciej A., Nieużyla L., Simka W.: Modification of Ti-6Al-4V alloy surface by EPD-PEO process in ZrSiO4 suspension. Archives of Metallurgy and Materials 59(1) (2014), 199-204.

10. Rokosz K., Hryniewicz T., Raaen S.: Development of Plasma Electrolytic Oxidation for improved Ti6Al4V biomaterial surface properties. The International Journal of Advanced Manufacturing Technology. 85 (2016), 2425-2437.

11. Kazek-Kęsik A., Kuna K., Dec W., Widziołek M., Tylko G., Osyczka A.M., Simka W.: In vitrobioactivity investigations of Ti-15Mo alloy after electrochemical surface modification. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 104B (2015), 903-913.

12. Rokosz K., Hryniewicz T., Raaen S.: SEM, EDS and XPS analysis of nanostructured coating obtained on NiTi biomaterial alloy by Plasma Electrolytic Oxidation (PEO). Tehnički Vjesnik-Technical Gazette. 24(1) (2017), 193-198.

13. Simka W., Nawrat G., Chlode J., Maciej A., Winiarski A., Szade J., Radwanski K., Gazdowicz J.: Electropolishing and anodic passivation of Ti6Al7Nb alloy. Przemysł Chemiczny. 90(1) (2011), 84-90.

14. Rokosz K., Hryniewicz T., Raaen S., Chapon P.: Investigation of porous coatings obtained on Ti-Nb-Zr-Sn alloy biomaterial by Plasma Electrolytic Oxidation: Characterisation and Modelling. The International Journal of Advanced Manufacturing Technology 87(9) (2016) 3497–3512.

15. Han Y., Hong S.H., Xu K.W.: Structure and in vitro bioactivity of titania-based films by micro-arc oxidation. Surface and Coatings Technology 168 (2003) 249-258.

16. El Achhaba M., Schierbaum K.: Structure and hydrogen sensing properties of plasma electrochemically oxidized titanium foils. Procedia Engineering 47 (2012), 566–569; doi:10.1016/j.proeng.2012.09.210.

17. Peng B.Y., Nie X., Chen Y.: Effects of Surface Coating Preparation and Sliding Modes on Titanium Oxide Coated Titanium Alloy for Aerospace Applications. Int. J. Aerospace. Eng. 2014 (2014), 640364, 1–10; doi:10.1155/2014/640364.

18. Rokosz K., Hryniewicz T., Dalibor M., Raaen S., Valiček J., Dudek Ł., Harničarova M.: SEM, EDS and XPS Analysis of the Coatings Obtained on Titanium after Plasma Electrolytic Oxidation in Electrolytes Containing Copper Nitrate. Materials 9(5) (2016), 1-12.

19. Rokosz K., Hryniewicz T., Gaiaschi S., Chapon P., Raaen S., Pietrzak K., Malorny W.: Characterisation of Calcium- and Phosphorus-Enriched Porous Coatings on CP Titanium Grade 2 Fabricated by Plasma Electrolytic Oxidation. Metals 7 (2017), 354; doi:10.3390/met7090354.

20. Rokosz K., Hryniewicz T., Gaiaschi S., Chapon P., Raaen S., Pietrzak K., Malorny W., Salvador Fernandes J.: Characterization of Porous Phosphate Coatings Enriched with Magnesium or Zinc on CP Titanium Grade 2 under DC Plasma Electrolytic Oxidation. Metals 8 (2018), 112; doi:10.3390/met8020112.

Advances in Materials Science

The Journal of Gdansk University of Technology

Journal Information

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 164 164 27
PDF Downloads 105 105 11