Wear Resistance of the Cermet Cutting Tools After Aluminum (Al+) and Nitrogen (N+) Ion Implantation

Open access


In the paper, the issue of the cermet cutting tools wear resistance was addressed. The tool inserts made out of cermet composites were exposed to the ion implantation with ions of nitrogen N+ and with combination of nitrogen N+ and aluminum Al+ ions. In order to assess the impact of the ion implantation, the samples of stainless steel EZ6NCT25 were turned with the standard cutting tools and with the inserts after ion implantation. The results in general confirmed better wear resistance of the ion implanted inserts. In particular, they performed 20-40% smaller friction. After some time, when the destruction of the implanted surface layer took place, the friction coefficient rose up to the value typical for non-implanted inserts. For the implanted inserts, the wear index VB appeared to be lower, and even visual assessment revealed distinguishably smaller wear than in case of tools without ion implantation.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Gevorkian E. Lavrynenko S. Rucki M. Siemiątkowski Z. Kislitsa M.: Ceramic cutting tools out of nanostructured refractory compounds. International Journal of Refractory Metals and Hard Materials 68 (2017) 142-144.

  • 2. Stephenson D.A. Agapiou J.S. Metal Cutting Theory and Practice CRC Press Boca Raton 2016.

  • 3. Zhang S. Zhao D. Aerospace Materials Handbook CRC Press Boca Raton 2013.

  • 4. Krar S. Gill A. Exploring Advanced Manufacturing Technologies Industrial Press Inc. New York 2003.

  • 5. Dobrzański L.A. Matula G.: Podstawy metalurgii proszków i materiały spiekane. Cermetale narzędziowe. Open Access Library 8 (2012) 9-39.

  • 6. Shepard S.R. Suh N.P.: The Effects of Ion Implantation on Friction and Wear of Metals. Journal of Lubrication Technology 104 (1982) 29-38.

  • 7. Huang X. Etsion I. Shao T. Effects of elastic modulus mismatch between coating and substrate on the friction and wear properties of TiN and TiAlN coating systems. Wear 338-339 (2015) 54-61.

  • 8. PalDey S. Deevi S.C. Single layer and multilayer wear resistant coatings of (Ti Al)N: A review. Materials Science and Engineering A 342 (2003) 58-79.

  • 9. Zhang P. Cai Z. Xiong W. Influence of Si content and growth condition on the microstructure and mechanical properties of Ti-Si-N nanocomposite films. Surface and Coatings Technology 201 (2007) 6819-6823.

  • 10. Zhang X.C. Xu B.S. Wang H.D. Wu Y.X. Jiang Y. Underlying mechanisms of the stress generation in surface coatings. Surface and Coatings Technology 201 (2007) 6715-6718.

  • 11. Shalnov K.V. Kukhta V.K. Uemura K. Ito Y. Applications of combined ion implantation for improved tribological performance. Surface and Coatings Technology 206 (2011) 849-853.

  • 12. Narojczyk J Werner Z Piekoszewski J. Szymczyk W. Effects of nitrogen implantation on lifetime of cutting tools made of SK5M tool steel. Vacuum 78 (2005) 229-233.

  • 13. Perry A.J. Treglio J.R. Bhat D.G. Boppana S.P. Kattamis T.Z. Schlichting G. Geist D.E. Effect of ion implantation on the residual stress tribological and machining behavior of CVD and PVD TiN coated cemented carbide cutting tool inserts. Surface and Coatings Technology 68-69 (1994) 294-300.

  • 14. Poletika M.F. Vesnovsky O.K. Polestchenko K.N. Ion implantation for cutting tools. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 61 (1991) 446-450.

  • 15. García J.A. Rodríguez R.J. Ion implantation techniques for non-electronic applications. Vacuum 85 (2011) 1125-1129.

  • 16. Krolczyk G.M. Nieslony P. Legutko S. Determination of tool life and research wear during duplex stainless steel turning. Archives of Civil and Mechanical Engineering 15 (2015) 347-354.

  • 17. Stroosnijder M.F. Ion implantation for high temperature corrosion protection. Surface and Coatings Technology 100-101 (1998) 196-201.

  • 18. Mitsuo A. Uchida S. Nihira N. Iwaki M. Improvement of high-temperature oxidation resistance of titanium nitride and titanium carbide films by aluminium ion implantation. Surface and Coatings Technology 103-104 (1998) 98-103.

  • 19. Ward L.P. Purushotham K.P. Manory R.R. Studies on the surface modification of TiN coatings using MEVVA ion implantation with selected metallic species. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 368 (2016) 37-44.

  • 20. Ji W. Zou B. Zhang Sh. Xing H. Yun H. Wang Y. Design and fabrication of gradient cermet composite cutting tool and its cutting performance. Journal of Alloys and Compounds 732 (2018) 25-31.

  • 21. Bobzin K. High-performance coatings for cutting tools. CIRP Journal of Manufacturing Science and Technology 18 (2017) 1-9.

Journal information
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 248 160 3
PDF Downloads 160 95 0