Biomaterials and Implants in Cardiac and Vascular Surgery - Review

Open access

Abstract

Currently, on prosthesis in cardiac blood vessels and heart valves are used materials of animal or synthetic origin. For animal materials include, among others pericardial sac in which is the heart. Materials such as this (natural) are characterized by a remarkable biocompatibility within the human body, but their main disadvantage is the relatively low durability. In turn, synthetic materials, which include the austenitic chromium-nickel-molybdenum steels, alloys with a shape memory (nickel-titanium), or polymeric materials, such as lactic acid, are characterized by high stability in an environment of bodily fluids, wherein the insufficiently high biocompatibility with the organism human requires from patients using after implantation, anticoagulants which prevent anti-platelet deposition on the surface of the prosthesis. The present work is a review of biomaterials using in implantology and implants using in cardiac and vascular surgery.

References

  • 1. Świeczko-Żurek B., Zieliński A., Sobieszczyk S., Ossowska A.: Biomaterials [in Polish], Gdansk Univ. of Technology, 2011.

  • 2. Polohski L. [ed.]: Fundamentals of cardiology [in Polish]. Katowice, Śląska Akademia Medyczna, 2000.

  • 3. Williams D.F.: Definitions in biomaterials. Amsterdam - Oxford - New York Tokyo, Elsevier (1987), 24.

  • 4. Williams D.F.: Definitions in biomaterials. Progress in Biomedical Engineering 4 (1987), 67.

  • 5. www.imz.us.edu.pl, date of download: 12.10.2013.

  • 6. Bergmann C.P., Stumpf A.: Dental ceramics, Topics in mining. Metallurgy and materials engineering, 2 Springer-Verlag Berlin Heidelberg, 2013.

  • 7. Kucharczyk W., Mazurkiewicz A., Żurowski W.: Modern construction materials - selected issues [in Polish]. Politechnika Radomska, Radom, 2008.

  • 8. Blicharski M.: Introduction to engineering materials [in Polish]. WNT Warszawa, 2003.

  • 9. Dudek A., Przerada I.: Metallic-ceramic composites for use in medicine [in Polish]. Materiały ceramiczne, 62, 1 (2010), 20-23.

  • 10. Snyder R.W., Helmus M.N.: Cardiovascular biomaterial, standard handbook of biomedical engineering and design, 2004.

  • 11. Nowacki J., Dobrzahski L.A., Gustavo F: Intramedullary implants in long bones osteosynthesis, Gopen Access Library, 11, 2012.

  • 12. Schliephake H., Kage T.: Enhancement of bone regeneration using resorbable ceramics and a polymer-ceramic composite material. Journal of biomedical materials research, 56 (2001), 1.

  • 13. Hench L.L., Paschall H.A.: Direct chemical bond of bioactive glass-ceramic materials to bone and muscle. Journal of biomedical materials research, 7, 3 (1973), 25-42.

  • 14. Ritchie R.O.: Fatigue and fracture of pyrolytic carbon: A damage-tolerant approach to structural integrity and life prediction in ‘ceramic’ heart valve prostheses. Journal of heart valve disease, 5, 1 (1996) 9-31.

  • 15. Robert A., Freitas J.: Pyrolytic or low temperature isotropic carbon, Nanomedicine IIA: Biocompatibility, Landes Bioscience, Georgetown, TX, 2003.

  • 16. Davis J.R: Handbook of materials for medical devices, 6, 2003, 148.

  • 17. Carter C.B., Norton M.G.: Ceramic materials: science and engineering, 35, 635-651.

  • 18. Scheerded I.D.: The Biocompatibility of diamond-like carbon nano films, J. Invasive Cardiology 12, 2000, 389-394.

  • 19. Okroj W., Kamihska M., Klimek L., Szymahski W., Walkowiak B.: Blood platelets in contact with nanocrystalline diamond surfaces, Diamond&related materials 15, 10 (2006), 1535-1539.

  • 20. Grill A.: Diamond-like carbon coatings as biocomplatible materials- an overview. Diamond&related materials, 12, 2 (2003), 166-170.

  • 21. Hauert R: A review of modified DLC coatings for biological applications. Diamond&related materials 12, 3-7 (2003), 583-589.

  • 22. Freitas R.A.: Foresight Update, 39 Foresight Inst. Palo-Alto, CA, USA, 1999.

  • 23. Dearnley P.A.: A review of metalli, ceramic and surface treated metals used for bearing surface in human joint replacements. Proc. of institution of mechanical engineers. Art H., Engineering in medicine, 213 (1999), 107-135.

  • 24. Brinson H.F, Brinson L.C., Polymer engineering science and viscoelasticity: characteristics, applications and properties of polymers, 2008, 55-97.

  • 25. Świeczko - Żurek B: Biomaterials [in Polish], Wydawnictwo Politechniki Gdahskiej, 2009, Gdańsk

  • 26. Sowa-Lewandowska K.: Real or artificial? - A few words about the biomaterials. www.laboratoria.net.pl, date of download: 16.10.2013

  • 27. Guidoin R.C., Snyder, R.W., Awad J.A., King, M.W.: Biostability of vascular prostheses. Cardiovascular biomaterials, Hastings, GW [ed.]. New York: Springer-Verlag, 1991.

  • 28. www.ptfe.net.pl, date of download 4.01.2014.

  • 29. Maarek J.M., Guidoin R., Auhin M., Prud'homme R.E.: Molecular weight characterisation of virgin and explanted polyester arterial prostheses. Journal biomedical materials research 18 (1984), 881-894.

  • 30. Guidoin R, Martin L., Marois M, Gosselin C, King M., Gunasekera K., Domurado D., SigotLuizard M.F., Sigot M., Blais P.: Polyester prostheses as suhstitutes in the thoracic aorta of dogs. II. Evaluation of alhuminated polyester grafts stored in ethanol. Journal biomedical material research 18 (1984), 1059-1072.

  • 31. Cengiz M., Sauvage L.R., Berger K, Rohel S.B., Robel V., Wu H.D., Walker M., Appleyard R.F., Wood S.J.: Effects of compliance alteration on healing of a porous Dacron prosthesis in the thoracic aorta of the dog. Surgical gynecological obstet 158 (1984), 145-151.

  • 32. Błażewicz M., Błażewicz S., Chłopek J., Staszków E.: Structure and properties of carbon materials for medical applications. Ceramics in substitutive and reconstructive surgery. Amsterdam: Elsevier, 1991.

  • 33. Błażewicz M.: Carbon materials in the treatment of soft and hard tissue injuries. European cells and materials 2 (2001), 21-29.

  • 34. Nałęcz M. [ed.]: Biocybernetics and biomedical engineering 2000, Vol. 4 Biomaterials [in Polish]. PAN, Akademicka oficyna wydawnicza Exit, 2003.

  • 35. Liu X., Chu P.K., Ding C: Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Material science engineering 47 (2004), 49-121.

  • 36. Marciniak J.: Biomaterials [in Polish]. Wydawnictwo Politechniki Śląskiej, 2002, Gliwice.

  • 37. Talonen J., Nenonen P., Pape G., Hänninen H.: Effect of strain rate on the strain-induced -martensite transformation and mechanical properties of austenitic stainless steels, Metallurgical and materials transactions A, 432, 36A, February 2005.

  • 38. Pelletier H., Muller D., Mille P., Cornet A., Grob J.J.: Surf. Coat Technol. 2002, 151-377.

  • 39. Rawers J., Crogdon F., Krabbe R, Duttlinger N., Powder Metall., 39, 1996.

  • 40. Fujiwara H., Ameyama K.: Mater Sci. Forum, 47 (1999), 304-306.

  • 41. Ucok I., Ando T., Grant N.J.: Mater Sci. Eng. A, 1991, 133:284.

  • 42. Pakiela Z., Sus-Ryszkowska M., Druzycka-Wiencek A., Kurzydlowski K.J.: Seventh Int. Conf. on Nanostructured Materials, Germany, 20-24 June 2004.

  • 43. Elias C.N., Lima J.H.C., Valiev R, Meyers M.A.: Biomedical applications of titanium and its alloys, Biological materials science, 2008 March JOM, 46-49.

  • 44. de Viteri V.S., Fuentes E., Titanium and titanium alloys as biomaterials, Tribology -fundamentals and advancements, 2013 May, 155-174.

  • 45. Krasicka-Cydzik E., Mstowski J., Ciupik L.F.: Implant materials: steel and titanium alloys, Dero system: The development of operational techniques of treatment of spine.

  • 46. Breitbart A.S., Ablaza V.J., Implant materials, Grabb and Smith's Plastic Surgery, Sixth Edition by Charles H. Thorne, Copyright © 2007 by Lippincott Williams & Wilkins.

  • 47. Stodolak E., Fraczek-Szczypta A., Mikociak D., Morawska-Chochól A., Szaraniec E., Zima A.: Laboratory of subject: implants and artificial organs [in Polish], Międzywydziałowa Szkoła Inżynierii Biomedycznej, AGH, Kraków, 2009.

  • 48. Kaczmarek M., Tyrlik-Held J., Paszenda Z., Marciniak J.: Characteristics of stents in terms of application and material. Achievements in mechanical&materials engineering. 12th international scientific conference, Politechnika Śląska, Gliwice (2003), 421-428.

  • 49. Gąsior Z., Stępińska J.: Advances in the diagnosis and treatment of acquired valvular heart defects [in Polish], Centrum Medyczne Kształcenia Podyplomowego w Warszawie (2011).

  • 50. http://rcpals.com/downloads/2007files/may/accaha/type_of_stents.html, date of download: 2.01.2014

  • 51. Kopernik M: The role of supporting research in the design of artificial ventricle, 2008.

  • 52. Butany J., Ahluvalia M.S., Munroe C, Fayet C, Ahn C, Blit P, Kepron C, Cusimano R.J., Leask R.L.: Mechanical heart valve prosthesis: identification and evaluation (erratum). Cardiovascular pathology, 12 (2003), 322-344.

  • 53. Rachwalik M., Biały D., Wawrzyńska M.: Mechanical prosthetic heart valves - the history and development of technology. Acta Bio-optica et. Informatica Medica, 2012.

  • 54. Bhuvaneshwar G.S., Muraleedharan C.V., Ramani A.V., Valiathan M.S.: Evaluation of materials for artificial heart valves. Bull. Material Science, 14 (1991), 1361-1374.

  • 55. Bloomfield P.: Choice of heart valve prosthesis, Heart, BMJ Group, http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1767148/

  • 56. Muraleedharan C.V., Bhuvaneshwar G.S.: Failure mode and effect analysis of Chitra heart valve prosthesis, Proc. RC IEEE & 14th BMESI, New Delhi, 1995, 352-354.

  • 57. Corbett T.L., Elher K.S., Garwood C.L.: Successful use of fondaparinux in a patient with a mechanical heart valve replacement and a history of heparin-induced thrombocytopenia, J Thromb thrombolysis 1 (2010), 23.

  • 58. Quinn J., Von Klemperer K., Brooks R.: Use of high intensity adjusted dose low molecular weight heparin in women with mechanical heart valves during pregnancy: a single-center experience, Haematologica 9 (2009), 1608-1612.

  • 59. Khan S., Trento A., DeRobertis M.: Twenty-year comparison of tissue and mechanical valve replacement, The journal of thoracic and cardiovascular surgery 122 (2001), 257-268.

  • 60. www.cskmswia.pl, Department of Cardiac Surgery - Poland's first operation of biological heart valve implantation of the latest generation, date of download: 31.01.2014.

Advances in Materials Science

The Journal of Gdansk University of Technology

Journal Information

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 29 29 24
PDF Downloads 4 4 3