Optimal Features of Porosity of Ti Alloys Considering their Bioactivity and Mechanical Properties

Open access

Optimal Features of Porosity of Ti Alloys Considering their Bioactivity and Mechanical Properties

This article reviews the influence of porosity and pore sizes of titanium and titanium alloys, used as orthopaedic materials, on bioactivity and mechanical properties of the porous structures. The optimal features of porous titanium scaffolds allow the reconstruction and regeneration of bone tissue in load-bearing applications.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Gu Y. W. Yong M. S. Tay B. Y. Lim C. S.: Synthesis and bioactivity of porous Ti alloy prepared by foaming with TiH2. Materials Science and Engineering vol. C 29 (2009) 1515-1520.

  • Froimson M. I. Garino J. Machenaud A. Vidalain J. P.: Minimum 10-year results of a tapered titanium hydroxyapatite-coated hip stem. The Journal of Arthroplasty 22 no.1 (2007) 1-7.

  • Spoerke E. D. Murray N. G. Li H. Brinson L. C. Dunand D. C. Stupp S. I.: A bioactive titanium foam scaffold for bone repair. Acta Biomaterialia 1 (2005) 523-533.

  • Karageorgiou V. Kaplan D.: Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26 (2005) 5474-5491.

  • Li J. P. Habibovic P. Doel M. Wilson C. E. Wijn J. R. Blitterswijk C. A. Groot K.: Bone ingrowth in porous titanium implants produced by 3D fiber deposition. Biomaterials 28 (2007) 2810-2820.

  • Alvarez K. Hyun S. K. Nakano T. Umakoshi Y. Nakajima H.: In vivo osteocompatibility of Lotus-type porous nickel-free stainless steel in rats. Mater. Sci. Eng. C 29 (2009) 1182-1190.

  • Galante J. Rostoker W.: Fiber metal composities in the fixation of skeletal prosthesis. J. Biomed. Mater. Res. 4 (1973) 43-61.

  • Galante J. Rostoker W. Lueck R.: Sintered fibre metal composites as a basis for attachment of implants to bone J. Bone. J Surg. 53 A(1) (1971) 101-114.

  • Davis N. G. Teisen J. Schuh C. Dunand D. C.: Solid-state foaming of titanium by superplastic expansion of argon-filled pores. J. Mater. Res. 16 (2001) 1508-1539.

  • Li J. P. Li S. H. Van Blitterswijk C. A. De Groot K.: A novel porous Ti6Al4V: characterization and cell attachment. J. Biomed. Mater. Res. 73A (2005) 223-233.

  • Miyao R. Omori M. Watari F. Yokoyama A. Matsumo H. Hirai T. Kawasaki T.: Fabrication of functionally graded implants by spark plasma sintering and their properties. J. Japan Soc. Powder Metall. 47 (2000) 1239-1242.

  • Groza J. R. Zavaliangos A.: Sintering activation by external electrical field. Mater Sci. Eng. A. 287 (2000) 171-177.

  • Charriere E. Lemaitre J. Zysset Ph.: Hydroxyapatite cement scaffolds with controlled macroporosity: fabrication protocol and mechanical properties. Biomaterials 24 (2003) 809-817.

  • Borisov A. A. De Luca L. Merzhanov A.: Self-propagating high-temperature synthesis. Combustion Science & Technology Book Series vol.5 New York (2002).

  • Lopez-Heredia M. A. Sohier J. Gaillard C. Quillard S. Dorget M. Layrolle P.: Rapid prototyped porous titanium coated with calcium phosphate as a scaffold for bone tissue engineering. Biomaterials 20 (2008) 2608-2615.

  • Li J. P. Wijn J. R. Blitterswijk C. A. Groot K.: Porous Ti6Al4V scaffold directly fabricating by rapid prototyping: Preparation and in vitro experiment. Biomaterials 27 (2006) 1223-1235.

  • Ravelingien M. Hervent A-S. Mullens S. Luyten J. Vervaet Ch. Remon J. P.: Influence of surface topography and pore architecture of alkali-treated titanium on in vitro apatite deposition. Applied Surface Science 256 (2010) 3693-3697.

  • Mullen L. Stamp R. C. Brooks W. K. Jones E. Sutcliffe C. J.: Selective laser melting: A regular unit approach for the manufacture of porous titanium bone ingrowth constructs suitable for orthopaedic applications. J. Biomed. Mater. Res. B 2009 in press.

  • Lee J.-H. Kim H-E. Koh Y-H.: Highly porous titanium (Ti) scaffolds with bioactive microporous hydroxyapatite/TiO2 hybrid coating layer. Materials Letters 63 (2009) 1995-1998.

  • Vasconcellos L. M. Oliveira M. V. Graca M. L. Vasconcellos L. G. O. Carvalho Y. R. Cairo C. A. A.: Porous titanium scaffolds produced by powder metallurgy for biomedical applications. Mater Res. 11 (3) (2008) 275-280.

  • Shen H. Oppenheimer S. M. Dunand D. C. Brinson L. C.: Numerical Modeling of Pore Size and Distribution in Foamed Titanium. Mechanics of Mat. 38 (8-10) (2006) 933-944.

  • Bram M. Schiefer H. Bogdanski D. Koller M. Buchkremere H. P. Stover D.: Implant surgery: How bone bonds to PM titanium. Metal Powder R. (2006) 26-31.

  • St-Pierre J-P. Gauthier M. Lefebvre L-P. Tabrizian M.: Three-dimensional growth of differentiating MC3T3-E1. Biomaterials 26 (2005) 7319-7328.

  • Cachinho S. C. P. Correia R. N.: Titanium scaffolds for osteointegration: mechanical in vitro and corrosion behaviour. J. Mater. Sci: Mater. Med. 19 (2008) 451-457.

  • Liao S. Chan C. K. Ramakrishna S.: Stem cells and biomimetic materials strategies for tissue engineering. Mater. Sci. and Eng. C 28 (2008) 1189-1202.

  • Zhang E. Zou Ch.: Porous titanium and silicon-substituted hydroxyapatite biomodification prepared by a biomimetic process: Charakterization and in vivo evaluation. Acta Biomaterialia 5 (2009) 1732-1741.

  • Hayakawa T. Takahashi K. Okada H. Yoshinari M. Hara H. Mochizuki Ch. Yamamoto H. Sato M.: Effect of thin carbonate-containing apatite (CA) coating of titanium fiber mesh on trabecular bone response. J. Mater. Sci: Mater. Med. 19 (2008) 2087-2096.

  • Fujibayashi S. Neo M. Kim H-M. Kokubo T. Nakamura T.: Osteoinduction of porous bioactive titanium metal. Biomaterials 25 (2004) 443-450.

  • Muller U. Imwinkelried T. Horst M. Sievers M. Graf-Hausner U.: Do human osteoblasts grow into open-porous titanium? European Cells and Mat. 11 (2006) 8-15.

  • Zhang Q. Leng Y. Xin R.: A comparative study of electrochemical deposition and biomimetic deposition of calcium phosphate on porous titanium. Biomaterials 26 (2005) 2857-2865.

  • Shen H. Li H. Brinson L. C.: Effect of microstructural configurations on the mechanical responses of porous titanium: A numerical design of experiment analysis for orthopaedic applications. Mechanics and Materials 40 (2008) 708-720.

  • Li Ch. Zhu Z.: Dynamic Young's modulus of open-porosity titanium measured by the electromagnetic acoustic resonance method. J. Porous Mater. 13 (2006) 21-26.

  • Ryan G. E. Pandit A. S. Apatsidis D. P.: Porous titanium scaffolds fabricated using a rapid prototyping and powder metallurgy technique. Biomaterials 29 (2008) 3625-3635.

  • Zhao J. Lu X. Weng J.: Macroporous Ti-based composite scaffold prepared by polymer impregnating method with calcium phosphate coatings. Mater. Lett. 62 (2008) 2921-2924.

  • Chen X-B. Li Y-C. Hodgson P. D. Wen C.: The importance of particle size in porous titanium and nonporous counterparts for surface energy and its impact on apatite formation. Acta Biomaterialia 5 (2009) 2290-2302.

  • Ahmad S. Muhamad N. Muchtar A. Sahari J. Jamaludin K. R Ibrahim M. H. Mohamad Nor N. H. Murtadhahadi I.: Producing of titanium foam using titanium alloy (Al3Ti) by slurry method. Brunei Int. Conf. of Eng. And Techn. (BICET) 3-4.11.2008 Brunei (2008).

  • Esen Z. Bor S.: Processing of titanium foams using magnesium spacer particles. Scripta Materialia 56 (2007) 341-344.

  • Kotan G. Bor A. S.: Production and Characterization of High Porosity Ti-6A-4V Foam by Space Holder Technique in Powder Metallurgy. Turkish J. Eng. Env. Sci. 31 (2007) 149-156.

  • Xiong J. Li Y. Wang X. Hodgson P. Wen C.: Mechanical properties and bioactive surface modification via alkali-heat treatment of a porous Ti-18Nb-4Sn alloy for biomedical applications. Acta Biomaterialia 4 (2008) 1963-1968.

  • Lu Y-P. Li M-S. Li S-T. Wang Z-G. Zhu R-F.: Plasma-sprayed hydroxyapatite + titania composite bond coat for hydroxyapatite coating on titanium substrate. Biomaterials 25 (2004) 4393-4403.

  • Liu X. Chu P. K. Ding Ch.: Surface modification of titanium titanium alloys and related materials for biomedical applications. Materials Science and Engineering 47 (2004) 49-121.

  • Wen C. E. Xu W. Hu W. Y. Hodgson P. D.: Hydroxyapatite/titania sol-gel coatings on titanium-zirconium alloy for biomedical applications. Acta Biomaterialia 3 (2007) 403-410.

  • Mayr H. Ordung M. Ziegler G.: Development of thin electrophoretically deposited hydroxyapatite layers on Ti6Al4V hip prosthesis. J. Mater Sci. 41 (2006 8138-8143.

  • Wang C. X. Wang M. Zhou X.: Nucleation and growth of apatite on chemically treated titanium alloy: an electrochemical impedence spectroscopy study. Biomaterials 24 (18) (2003) 3069-3077.

  • Sobieszczyk S.: Hydroxyapatite coatings on porous Ti and Ti alloys. Advances in Mater. Sci. 10 (1) (2010) 19-28.

  • Schmidt C. Kaspar D. Sarkar M. R. Claes L. E. Ignatius A. A.: A scanning electron microscopy study of human osteoblast morphology on five orthopaedic metals. J. Biomed. Mater. Res. (Appl. Biomaterials) 63 (2002) 252-261.

  • Annaz B. Hing K. A. Kayser M. Buckland T. Di Silvo L.: Porosity variation in hydroxyapatite and osteoblast morphology: a scanning electron microscopy study. J. of Microscopy 215 (2004) 100-110.

  • Sun J. Han Y. Cui K.: Microstructure and apatite-forming ability of the MAO-treated porous titanium. Surface & Coatings Technology 202 (2008) 4248-4256.

  • Lu Y-P. Song Y-Z. Zhu R-F. Li M-S. Lei T-Q.: Factors influencing phase compositions and structure of plasma sprayed hydroxyapatite coatings during heat treatment. Applied Surf. Sci. 206 (2003) 345-354.

  • Feng B. Chu X. Chen J. Wang J. Lu X. Weng J.: Hydroxyapatite coating on titanium surface with titania nanotube layer and its bond strength to substrate. J Porous Materials (2009) published on-line: http://www.springerlink.com/content/793488162u28q61t/

  • Jones J. R.: New trends in bioactive scaffolds: The importance of nanostructure. J European Cer. Soc. 29 (2009) 1275-1281.

  • Sridhar T. M. Eliaz N. Mudali U. K. Ray B.: Electrophoretic deposition of hydroxyapatite coatings and corrosion aspects of metallic implants. Corr. Rev. 20(4-5) (2002) 255-293.

  • Sobieszczyk S.: Surface modifications of Ti and Ti alloys. Advances in Materials Science 10(1) (2010) 29-42.

  • Chen X. V. Nouri A. Li Y. C. Lin J. G. Hodgson P. D. Wen C. E.: Effect of surface roughness of Ti Zr and TiZr on apatite precipitation from simulated body fluid. Biotechnol Bioeng 101 (2008) 378-387.

  • Chen X. B. Li Y. C. Hodgson P. D. Wen C. E.: Microstructures and bond strengths of the calcium phosphate coatings formed on titanium from different simulated body fluids. Mater. Sci. Eng. C29 (2009) 165-171.

  • Wang X. J. Li Y. C. Lin J. G. Hodgson P. D. Wen C. E.: Apatite-inducing ability of titanium oxide layer on titanium surface: the effect of surface energy. J. Mater. Res. 23 (2008) 1682-1688.

  • Gibson L. J.: Biomechanics of cellular solids. J Biomechanics 38 (3) (2005) 377-399.

  • Zhao C. Y. Zhu X. D. Yuan T. Fan H. S. Zhang X. D.: Fabrication of biomimetic apatite coating on porous titanium and their osteointegration in femurs of dogs. Mater. Sci. and Eng. C 30 (2010) 98-104.

  • Wen C. E. Yamada Y. Shimojima K. Chino Y. Asahina T. Mabuchi M.: Processing and mechanical properties of autogenous titanium implant materials. J Mater. Sci.: Mater in Medicine vol.13(4) (2002) 397-401.

  • Oh I-H. Nomura N. Masahashi N. Hanada S.: Mechanical properties of porous titanium compacts prepared by powder sintering. Scripta Materialia 49 (12) (2003) 1197-1202.

  • Niemeyer T. C. Grandini C. R. Pinto L. M. C. Angelo A. C. D. Schneider S. G.: Corrosion behaviour of Ti-13Nb-13Zr alloy used as a biomaterial. J. Alloys and Comp. 476 (2009) 172-175.

  • Lacroix D. Chateau A. Ginebra M-P. Planell J. A.: Micro-finite element models of bone tissue-engineering scaffolds. Biomaterials 27 (2006) 5326-5334.

Search
Journal information
Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 319 211 1
PDF Downloads 110 80 1