Disturbance attenuation problem using a differential game approach for feedback linear quadratic descriptor systems

Open access

Abstract

This paper studies the H disturbance attenuation problem for index one descriptor systems using the theory of differential games. To solve this disturbance attenuation problem the problem is converted into a reduced ordinary zero-sum game. Within a linear quadratic setting the problem is solved for feedback information structure.

[1] T. Başar and P. Bernhard: H∞ Optimal Control and Related Minimax Design Problem. Modern Birkhäuser Classics, Boston, 1995.

[2] W.A. van den Broek, J.C. Engwerda and J.M. Schumacher,: Robust equilibria in indenite linear-quadratic dierential games. J. of Optimization Theory and Applications, 119 (2003), 565-595

[3] R.A. De Carlo and R. Saeks: Interconected Dynamical Systems. Marcel Dekker, New York, 1981.

[4] J.C. Engwerda: Linear Quadratic Dynamic Optimization and Differential Games. John Wiley & Sons, West Sussex, 2005.

[5] J.C. Engwerda and Salmah: Feedback nash equilibria for linear quadratic descriptor differential games. Automatica, 48 (2012), 625-631.

[6] J.C. Engwerda, Salmah and I.E. Wij ayanti : The (multi-player) linear quadratic feed-back state regulator problem for index one descriptor systems. Proc. European Control Conf. (Budapest), (2009).

[7] F. Gantm acher: Theory of Matrices. 2 Chelsea Publishing Company, New York, 1959.

[8] T. Geerts : Solvability conditions, consistency, and weak consistency for lineardierential- algebraic equations and time-invariant singular systems: The general case. Linear Algebra and its Applications, 181 (1993), 111-130.

[9] H. Hemami and B.F. Wyman: Modeling and control of constrained dynamic systems with application to biped locomotion in the frontal plane. IEEE Trans. on Automatic Control, 24 (1979), 526-535.

[10] J.C. Huang, H.S. Wang and F.R. Chang: Robust H∞ control for uncertain linear time-invariant descriptor systems. Proc. IEE Control Theory Applications, 147 (2000), 648-654.

[11] K. Zhou and J.C. Doyle: Essentials of Robust Control. Prentice-Hall, New Jersey, 1998.

[12] J. Kauts ky, N.K. Nic holas and E.K-W. Chu: Robust pole assignment in singular control systems. Linear Algebra and its Applications, 121 (1989), 9-37.

[13] A. Kumar and P. Daouti dis : State-space realizations of linear dierential algebraic- equation systems with control-dependent state space. IEEE Trans. on Automatic Control, 41 (1996), 269-274.

[14] G. Kun: Stabilizability, controllability, and optimal strategies of linear and nonlinear dynamical games. PhD Thesis, RWTH-Aachen, Germany, 2001.

[15] H.J. Lee, S.W. Kau and Y.S. Liu: An improvement on robust h1 control for uncertain continuous-time descriptor systems. Int. J. of Control, Automation, and Systems, 4 (2006), 271-280.

[16] D.G. Luenberger: Dynamic equations in descriptor form, IEEE Trans. on Automatic Control, 22 (1977), 312-321.

[17] D.G. Luenberger and A. Arbel: Singular dynamic leontief systems. Econometrica, 45 (1977), 991-995.

[18] W.M. McEneaney: Robust control and dierential games on a nite time horizon. Mathematics of Control, Signals, and Systems, 8 (1995), 138-166.

[19] J.K. Mills and A.A. Goldenberg: Force and position control of manipulators during constrained motion tasks, IEEE Trans. on Robotics and Automation, 5 (1989), 30-46.

[20] M.W. Must hofa, Salmah, J.C. Engwerda and A. Suparwanto: Robust optimal control design with dierential game approach for open-loop linear quadratic descriptor systems. J. of Optimization Theory and Applications, DOI 10.1007/ s10957-015-0750-8, (2015).

[21] M.W. Must hofa, Salmah, J.C. Engwerda and A. Suparwanto: Feedback saddle point equilibria for soft-constrained zero-sum linear quadratic descriptor dierential games. Archives of Control Sciences, 23 (2013), 473-493.

[22] M.W. Must hofa, Salmah, J.C. Engwerda and A. Suparwanto: The open-loop zero-sum linear quadratic impulse free descriptor dierential game. Int. J. on Applied Mathematics and Statistics, 35 (2013), 29-44.

[23] R.W. Newc omb : The semistate description of nonlinear time-variable circuits. IEEE Trans. on Circuits Systems, 28 (1981), 62-71.

[24] R.W. Newc omb and B. Dzi urla: Some circuits and systems applications of semistate theory. Circuits Systems Signal Processes, 8 (1989), 235-260.

[25] P.V. Reddy and J.C. Engwerda: Feedback nash equilibria for descriptor dierential game using matrix projectors. SIAM J. on Matrix Analysis and Applications, 32 (2013), 686-708.

[26] Salmah: Optimal control of regulator descriptor systems for dynamic games, PhD Thesis, Universitas Gadjah Mada, Indonesia, 2006.

[27] B. Scott : Power system dynamic response calculations. IEEE Proceedings, 67 (1979), 219-247.

[28] S. Singh and R.W. Liu: Existence of state equation representation of linear largescale dynamical systems. IEEE Trans. Circuits Systems, 20 (1973), 239-246.

[29] H.S. Wang, C.F. Yung and F.R. Chang: H∞ Control for Nonlinear Descriptor Systems. Springer Verlag, London, 2006.

[30] H. Xu and K. Miz ukami : Linear-quadratic zero-sum dierential games for generalized state space systems. IEEE Trans. on Automatic Control, 39 (1994), 143-147.

Archives of Control Sciences

The Journal of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.705

CiteScore 2016: 3.11

SCImago Journal Rank (SJR) 2016: 0.231
Source Normalized Impact per Paper (SNIP) 2016: 0.565

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 174 147 13
PDF Downloads 52 48 2