Fractional descriptor observers for fractional descriptor continuous-time linear system

Open access

Abstract

Fractional descriptor full-order observers for fractional descriptor continuous-time linear systems are proposed. Necessary and sufficient conditions for the existence of the observers are established. The design procedure of the observers is demonstrated on two numerical examples.

[1] M. DODIG and M. STOSIC: Singular systems state feedbacks problems. Linear Algebra and its Applications, 431(8), (2009), 1267-1292.

[2] W. CUIHONG: New delay-dependent stability criteria for descriptor systems with interval time delay. Asian J. of Control, 14(1), (2012), 197-206.

[3] L. DAI: Singular Control Systems. Lecture Notes in Control and Information Sciences, Springer-Verlag, Berlin, (1989).

[4] M.H. FAHMY and J. O’REILL: Matrix pencil of closed-loop descriptor systems: infinite-eigenvalue sassignment. Int. J. Control, 49(4), (1989), 1421-1431.

[5] F.R. GANTMACHER: The Theory of Matrices. Chelsea Publishing Co., New York, 1998.

[6] DUAN GUANG-REN: Analysis and Design of Descriptor Linear Systems, Springer, New York, 2010.

[7] T. KACZOREK: Checking of the positivity of descriptor linear systems with singular pencils. Archive of Control Science, 22(1), (2010), 77-86.

[8] T. KACZOREK: Descriptor fractional linear system with regular pencils. Int. J.Appl. Math. Comp. Sci., 23(2), (2013), 309-315.

[9] T. KACZOREK: Descriptor fractional linear systems with regular pencils. Asian J. of Control, 15(4), (2013), 1-14.

[10] T. KACZOREK: Full-order perfect observers for continuous-time linear systems, Bull. Pol. Acad. Sci. Techn., 49(4), (2001), 549-558.

[11] T. KACZOREK: Fractional positive continuous-time linear systems and their reachability.Int. J. Appl. Math. Vcomput. Sci., 18(2), (2008), 223-228.

[12] T. KACZOREK: Infinite eigenvalue assignment by output-feedbacks for singular systems. Int. J. Appl. Math. Comp. Sci., 14(1), (2004), 19-23.

[13] T. KACZOREK: Linear Control Systems, 1, Research Studies Press, J. Wiley, New York, 1992.

[14] T. KACZOREK: Positive linear systems consisting of n subsystems with different fractional orders. IEEE Trans. on Circuits and Systems, 58(7), (2011), 1203-1210.

[15] T. KACZOREK: Positive fractional continuous-time linear systems with singular pencils. Bull. Pol. Acad. Sci. Techn., 60(1), (2012), 9-12.

[16] T. KACZOREK: Selected Problems of Fractional Systems Theory. Springer-Verlag, Berlin, 2011.

[17] R. KOCISZEWSKI: Observer synthesis for linear discrete-time systems with different fractional orders. Pomiary Automatyka Robotyka (PAR), 2 (2013), 376-381, (CD-ROM).

[18] V. KUCERA and P. ZAGALAK: Fundamental theorem of state feedback for singular systems. Automatica, 24(5), (1988), 653-658.

[19] F.L. LEWIS: Descriptor systems, expanded descriptor systems and Markov parameters.IEEE Trans. Autom. Contr., 28(5), (1983), 623-624.

[20] D.G. LUENBERGER: Time-invariant descriptor systems. Automatica, 14 (1978), 473-480.

[21] D.G. LUENBERGER: Dynamical equations in descriptor form. IEEE Trans. Autom.Contr., 22(3), (1977), 312-321.

[22] D.G. LUENBERGER: Time-invariant descriptor systems. Automatica, 14 (1978), 473-480.

[23] I. N’DOYE, M. DAROUCH, H. VOOS and M. ZASADZINSKI: Design of unknown input fractional-order observers for fractional systems. Int. J. Appl. Math. Comput.Sci., 23(3), (2013), 491-500.

[24] I. PODLUBNY: Fractional Differential Equations. Academic Press, New York, 1999.

[25] P. VAN DOOREN: The computation of Kronecker’s canonical form of a singular pencil. Linear Algebra and its Applications, 27 (1979), 103-140.

[26] E. VIRNIK: Stability analysis of positive descriptor systems. Linear Algebra and its Applications, 429 (2008), 2640-2659.

Archives of Control Sciences

The Journal of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.705

CiteScore 2016: 3.11

SCImago Journal Rank (SJR) 2016: 0.231
Source Normalized Impact per Paper (SNIP) 2016: 0.565

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 115 112 9
PDF Downloads 68 67 5