Stator inter-turn fault detection of an induction motor using neuro-fuzzy techniques

Open access

Stator inter-turn fault detection of an induction motor using neuro-fuzzy techniques

Motivated by the superior performances of neural networks and neuro-fuzzy approaches to fault detection of a single phase induction motor, this paper studies the applicability these two approaches for detection of stator inter-turn faults in a three phase induction motor. Firstly, the paper develops an adaptive neural fuzzy inference system (ANFIS) detection strategy and then compares its performance with that of using a multi layer perceptron neural network (MLP NN) applied to stator inter-turn fault detection of a three phase induction motor. The fault location process is based on the monitoring the three phase shifts between the line current and the phase voltage of the induction machine.

References
  • M. Arkan, D. Kostic-Perovicand P.J. Unsworth: Modelling and simulation of induction motors with inter-turn faults for diagnosis. Electric Power Systems Research, 75 (2005), 57-66.

  • S. Bachir, S. Tnani, J.-C. Trigeassou and G. Champenois: Diagnosis by parameter estimation of stator and rotor faults occurring in induction machines. IEEE Trans. Ind. Electron., 53(3), (2006), 963-973.

  • M. Riera-Guasp, J. Antonino-Daviu, J. Roger-Folch and M.P. Molina: The use of the wavelet approximation signal as a tool for the diagnosis and quantification of rotor bar failures. IEEE Trans. Ind. Appl., 44(3), (2008), 716-726.

  • A.M. da Silva, R.J. Povinelli and N.A.O. Demerdash: Induction machine broken bar and stator short-circuit fault diagnostics based on three-phase stator current envelope. IEEE Trans. Ind. Electron., 55(3), (2008), 1310-1318.

  • G.G. Yen and K. Lin: Wavelet packet feature extraction for vibration monitoring. IEEE Trans. Ind. Electron., 47(3), (2000), 650-667.

  • M.E.H. Benbouzid et al.: Induction motors' detection and localization using stator current advanced signal processing techniques. IEEE Trans. Power Electron., 14(1), (1999), 14-22.

  • T.W.S. Chow and S. Hai: Induction machine fault diagnostic analysis with wavelet technique. IEEE Trans. Ind. Electron., 51(3), (2004), 558-565.

  • W. Thomson and M. Fenger: Current signature analysis to detect induction motor faults. IEEE Ind. Appl. Mag., 7(4), (2001), 26-34.

  • S. Nandi and H.A. Tolyat: Novel frequency domain based technique to detect incipient stator inter-turn faults in induction machines. In Conf. Rec. IEEE IAS Annu. Meeting, (2000), 367-374.

  • N. Arthur and J. Penman: Induction machine condition monitoring with higher order spectra. IEEE Trans. Ind. Electron., 47(5), (2000), 1031-1041.

  • M.B.K. Bouzid, G. Champenois, N.M. Bellaaj, L. Signac and K. Jelassi: An effective neural approach for the automatic location of stator interturn faults in induction motor. IEEE Trans. Ind. Electron., 55(12), (2008), 4277-4289.

  • P.V.J. Rodríguez and A. Arkkio: Detection of stator winding fault in induction motor using fuzzy logic. Applied Soft Computing, 8(2), (2008), 1112-1120.

  • S. Bachir, S. Tnani, J.-C. Trigeassou and G. Champenois: Diagnosis by parameter estimation of stator and rotor faults occurring in induction machines. IEEE Trans. Ind. Electron., 53(3), (2006), 963-973.

  • M.S. Ballal, Z.J. Khan, H.M. Suryawanshi and R. L. Sonolikar: Adaptive neural fuzzy inference system for the detection of inter-turn insulation and bearing wear faults in induction motor. IEEE Trans. Ind. Electron., 54(1), (2007), 250-258.

  • M. Awadallah and M. Morcos: Application of AI tools in fault diagnosis of electrical machines and drives Ů- An overview. IEEE Trans. Energy Convers., 18(2), (2003), 245-251.

  • V. Uraikul, C.W. Chan and P. Toniwachwuthikul: Artificial intelligence for monitoring and supervisory control of process systems. Eng. Appl. Artif. Intell., 20(2), 2007, 115-131.

  • F. Filippetti, G. Franceschini, C. Tassoni and P. Vas: AI techniques in induction machines diagnosis including the speed ripple effect. IEEE Trans. Ind. Appl., 34(1), (2008), 98-108.

  • F. Filippetti, G. Franceschini, C. Tassoni and P. Vas: Recent developments of induction motor drives fault diagnosis using AI techniques. IEEE Trans. Ind. Electron., 47(5), (2000), 994-1003.

  • S.J. Hong and G.S. May: Neural-network-based sensor fusion of optical emission and mass spectroscopy data for real-time fault detection in reactive ion etching. IEEE Trans. Ind. Electron., 52(4), (2005), 1063-1072.

  • S. Altug, M.Y. Chow and H.J. Trussell: Fuzzy inference system implemented on neural architectures for motor fault detection and diagnosis. IEEE Trans. Ind. Electron., 46(6), (2008), 1069-1079.

Archives of Control Sciences

The Journal of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.705

CiteScore 2016: 3.11

SCImago Journal Rank (SJR) 2016: 0.231
Source Normalized Impact per Paper (SNIP) 2016: 0.565

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 39 39 27
PDF Downloads 11 11 7