Antioxidant action of phenols: Revisiting theoretical calculations of their thermodynamics

Open access

Abstract

Theoretical prediction ability of M06-2X functional was tested for thermodynamics of phenol, 15 para and 15 meta phenol derivatives. Calculations were done for gas phase as well as for polar and nonpolar solvents. Although predicted values might be shifted from the experimental ones in the framework of the employed DFT functional and basis set, the calculated and experimental data sets correlate well together. Very good linearity was found especially for the correlation of experimental and theoretical proton affinities. Hammett type correlations between the environments considered were compared. The phenolic C—O bond length was also tested as an alternative substituent effect descriptor while the type and position of the functional group on the aromatic ring have a direct effect on the phenolic bond.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Becke AD (1988) Phys. Rev. A. 38: 3098.

  • Bordwell FG Cheng J (1991) J. Am. Chem. Soc. 113: 1736—1743.

  • Chen Y Xiao H Zheng J Liang G (2015) PLoS One 10: e0121276.

  • Francl MM Pietro WJ Hehre WJ Binkley JS Gordon MS DeFrees DJ Pople JA (1982) J. Chem. Phys. 77: 3654—3665.

  • Frisch MJ Trucks GW Schlegel HB Scuseria GE Robb MA Cheeseman JR Scalmani G Barone V Petersson GA Nakatsuji H Li X Caricato M Marenich AV Bloino J Janesko BG Gomperts R Mennucci B Hratchian HP Ortiz JV Izmaylov AF Sonnenberg JL Williams-Young D Ding F Lipparini F Egidi F Goings J Peng B Petrone A Henderson T Ranasinghe D Zakrzewski VG Gao J Rega N Zheng G Liang W Hada M Ehara M Toyota K Fukuda R Hasegawa J Ishida M Nakajima T Honda Y Kitao O Nakai H Vreven T Throssell K Montgomery JA Jr. Peralta JE Ogliaro F Bearpark MJ Heyd JJ Brothers EN Kudin KN Staroverov VN Keith TA Kobayashi R Normand J Raghavachari K Rendell AP Burant JC Iyengar SS Tomasi J Cossi M Millam JM Klene M Adamo C Cammi R Ochterski JW Martin RL Morokuma K Farkas O Foresman JB and Fox DJ (2016) Gaussian 16 Revision B.01 Gaussian Inc. Wallingford CT.

  • Fujio M McIver Jr RT Taft RW (1981) J. Am. Chem. Soc. 103: 4017—4029.

  • Hammett LP (1937) J. Am. Chem. Soc. 59: 96—103.

  • Hansch C Leo A Taft RW (1991) Chem. Rev. 91: 165—195.

  • Hariharan PC Pople JA (1973) Theor. Chim. Acta. 28: 213—222.

  • Huang F Jiang J Wen M Wang ZX (2014) J. Theor. Comput. Chem. 13: 1350074.

  • Jaffé HH (1953) Chem. Rev. 53: 191—261.

  • Klein E Lukeš V (2006a) J. Phys. Chem. A 110: 12312—12320.

  • Klein E Lukeš V (2006b) J. Mol. Struct.(THEOCHEM) 767: 43—50.

  • Klein E. Lukeš V (2006c) Chem. Phys. 330: 515—525.

  • Klein E Rimarcik J Lukes V (2009) Acta Chim. Slovaca 2: 37—51.

  • Lee C Yang W Parr RG (1988) Phys. Rev. B. 37: 785.

  • Luo S Zhao Y Truhlar DG (2011) Phys. Chem. Chem. Phys. 13: 13683—13689.

  • Marenich AV Cramer CJ Truhlar DG (2009) J. Phys. Chem. B. 113: 6378—6396.

  • Michalík M Vagánek A Poliak P (2014) Acta Chim. Slovaca. 7: 123—128.

  • Nazarparvar E Zahedi M Klein E (2012) J. Org. Chem. 77: 10093—10104.

  • Peverati R Truhlar DG (2011) J. Phys. Chem. Lett. 2: 2810—2817.

  • Rassolov VA Pople JA Ratner MA Windus TL (1998) J. Chem. Phys. 109: 1223—1229.

  • Rimarčík J Lukeš V Klein E Rottmannová L (2011) Comp. Theor. Chem. 967: 273—283.

  • Škorňa P Lengyel J Rimarčík J Klein E (2014) Comput. Theor. Chem. 1038: 26—32.

  • Vagánek A Rimarcik J Lukes V Rottmannová L Klein E (2011) Acta Chim. Slovaca 4: 55—71.

  • Zhao Y Truhlar DG (2008) Theor. Chem. Acc. 120: 215—241.

Search
Journal information
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 8 8 8
PDF Downloads 7 7 7