Steam explosion of wood particles from fibreboard and particle board with indirect control by enzymatic hydrolysis

Open access


Pretreatment of particles obtained from lignocellulosic materials by steam explosion with indirect control by enzymatic hydrolysis has been studied. The dendromass pretreatment model has been applied for recycled fibreboard and particle board based on softwood. Their structure and chemical composition partly predetermine these lignocellulosic materials consisting of a mixture of spruce and fir particles also for bioethanol production. Optimum steam explosion temperature of 205 °C was determined based on the concentration of total monosaccharides — glucose, xylose and arabinose, among all experimentally prepared hydrolysates. This corresponds to basic conditions for fine disintegration of biomass to lignocellulosic structure with good holocellulose accessibility. Particles obtained from fibreboard and particle board primarily consisting of softwood without steam explosion pretreatment provide relatively low cellulose accessibility for commercial enzymes activity while monosaccharides concentration is partly reduced because of torrefaction at high temperatures. The concentration of monosaccharides in hydrolysates was determined for original sample and each steam explosion temperature. Based on the steam explosion conditions, the effect of severity factors was investigated to find optimum pretreatment conditions to increase accessibility of softwood cellulose and hemicelluloses. The identified optimum severity factor RO = 4.09 matches the optimum steam explosion temperature of 205 °C and the residence time of 10 minutes.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Alvira P Tomás-Pejó E Ballesteros M Negro MJ (2010) Bioresource Technology 101: 4851—4861.

  • Arévalo R Peijs T (2016) Composites: Part A 83: 38—46.

  • Batista G Souza RBA Pratto B Santos-Rocha MSRD Cruz AJG (2019) Bioresource Technology 275: 321—327.

  • Bodîrlău R Teacă CA Resmeriţă AM Spiridon I (2012) Cellulose Chemistry and Technology 46: 381—387.

  • Erbreich M (2004) Dissertation Universität Hamburg.

  • Gawron J Grześkiewicz M Zawadzki J Zielenkiewicz T Radomski A (2011) Wood Research 56: 213—220.

  • Gigac J Fišerová M Stankovská M Pažitný A (2017) Wood Research 62: 919—930.

  • Hashemi SS Karimi K Mirmohamadsadeghi S (2019) Energy 175: 545—554.

  • Ihnát V Borůvka V Babiak M Lübke H Schwartz J (2015) Wood Research 60: 441—450.

  • Ihnát V Lübke H Russ A Borůvka V (2017) Wood Research 62: 45—56.

  • Ihnát V Lübke H Russ A Pažitný A Borůvka V (2018) Wood Research 63: 431—442.

  • Irle M Barbu MC (2010) In: Thoemen H Irle M Sernek M (Ed) Wood-Based Panels. An Introduction for Specialist Brunel University Press London.

  • Kokta BV Ahmed A (1998) In: Young RA Akhtar M (Ed) Environmentally friendly technologies for the pulp and paper industry (pp 191—214). John Wiley & Sons Inc. New York.

  • Kurth EF Ritter GJ (1934) Journal of the American Chemical Society 56: 2720—2723.

  • Liu X Pang Y Cui T Li Y Xi E Liu X Li Q Wan H Mao A (2019) American Journal of Agriculture and Forestry 7: 146—150.

  • Lühr C Pecenka R Budde J Hoffmann T Gusovius HJ (2018) Industrial Crops & Products 118: 81—94.

  • Manouchehrinejad M Mani S (2018) Biomass and Bioenergy 118: 93—104.

  • Moskalik T Gendek A (2019) Forests 10: 1—14.

  • National Renewable Energy Laboratory (NREL) (2008) Chemical analysis and testing laboratory analytical procedures: LAP-002 LAP-003 LAP-004. NREL Golden Colorado USA.

  • Patel H Chapla D Shah A (2017) Renewable Energy 109: 323—331.

  • Pažitný A Russ A Boháček Š Stankovská M Ihnát V Šutý Š (2019a) Wood Research 64: 437—448.

  • Pažitný A Russ A Boháček Š Stankovská M Šutý Š (2019b) Wood Research 64: 13—24.

  • Petráš R Mecko J Krupová D Slamka M Pažitný A (2019) Wood Research 64: 205—212.

  • Piekarski CM Francisco ACD Luz LMD Alvarenga THDP Bittencourt JVM (2014) Cerne 20: 409—418.

  • Risholm-Sundman M Vestin E (2005) Holz als Roh- und Werkstoff 63: 179—185.

  • Sánchez OJ Cardona CA (2008) Bioresource Technology 99: 5270—5295.

  • Sandberg D Haller P Navi P (2013) Wood Material Science and Engineering 8: 64—88.

  • Simangunsong E Ziegler–Devin I Chrusciel L Girods P Wistara NJ Brosse N (2018) Waste and Biomass Valorization (articles not assigned to an issue): 1—9.

  • Sluiter A Hames B Ruiz R Scarlata C Sluiter J Templeton D Crocker D (2011) Technical Report NREL/TP-540-42618. National Renewable Energy Laboratory (NREL) Golden Colorado USA.

  • Stankovská M Fišerová M Gigac J Pažitný A (2018) Cellulose Chemistry and Technology 52: 815—822.

  • Whistler RL Smart CL (1953) Journal of American Chemical Society 75: 1916—1918.

  • Xing C Wang S Pharr GM Groom LH (2008) Holzforschung 62: 230—236.

  • Yin S Wang S Rials TG Kit KM Hansen MG (2007) Wood and Fiber Science 39: 95—108.

Journal information
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5 5 5
PDF Downloads 2 2 2