Anticonvulsant valproic acid and other short-chain fatty acids as novel anticancer therapeutics: Possibilities and challenges

Katarzyna Lipska 1 , Anna Gumieniczek 1  and Agata A. Filip 2
  • 1 Chair and Department of Medicinal Chemistry, 20-090, Lublin, Poland
  • 2 Department of Cancer Genetics with Cytogenetics Laboratory, 20-080, Lublin, Poland

Abstract

Results from numerous pre-clinical studies suggest that a well known anticonvulsant drug valproic acid (VPA) and other short-chain fatty acids (SCFAs) cause significant inhibition of cancer cell proliferation by modulating multiple signaling pathways. First of all, they act as histone deacetylase (HDAC) inhibitors (HDIs), being involved in the epigenetic regulation of gene expression. Afterward, VPA is shown to induce apoptosis and cell differentiation, as well as regulate Notch signaling. Moreover, it up-regulates the expression of certain G protein-coupled receptors (GPCRs), which are involved in various signaling pathways associated with cancer. As a consequence, some pre-clinical and clinical trials were carried out to estimate anticancer effectiveness of VPA, in monotherapy and in new drug combinations, while other SCFAs were tested in pre-clinical studies. The present manuscript summarizes the most important information from the literature about their potent anticancer activities to show some future perspectives related to epigenetic therapy.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. A. Duenas-Gonzalez, M. Candelaria, C. Perez-Plascencia, E. Perez-Cardenas, E. Cruz-Hernandez and L. A. Herrera, Valproic acid as epigenetic cancer drug: preclinical, clinical and transcriptional effects on solid tumors, Cancer Treat. Rev. 34 (2008) 206222; https://doi.org/10.1016/j.ctrv.2007.11.003

  • 2. T. Tomson, D. Battino and E. Perucca, Valproic acid after five decades of use in epilepsy: time to reconsider the indications of a time-honoured drug, Lancet Neurol. 15 (2016) 210218; https://doi.org/10.1016/S1474-4422(15)00314-2

  • 3. A. Yarmohamadi, J. Asadi, R. Gharaei, M. Mir and A. K. Khoshnazar, Valproic acid, a histone deacetylase inhibitor, enhances radiosensitivity in breast cancer cell line, J. Radiat. Cancer Res. 9 (2018) 8692; https://doi.org/10.4103/jrcr.jrcr_37_17

  • 4. S. A. Brodie and J. C. Brandes, Could valproic acid be an effective anticancer agent? The evidence so far, Expert. Rev. Anticancer Ther. 14 (2014) 10971100; https://doi.org/10.1586/14737140.2014.940329

  • 5. A. Grabarska, M. Dmoszynska-Graniczka, E. Nowosadzka and A. Stepulak, Histone deacetylase inhibitors - Molecular mechanisms of actions and clinical applications, Postepy Hig. Med. Dosw. 67 (2013) 722735.

  • 6. L. Sun and D. H. Coy, Anti-convulsant drug valproic acid in cancers and in combination anticancer therapeutics, Mod. Chem. Appl. 2 (2014) 15; https://doi.org/10.4172/2329-6798.1000118

  • 7. C. Tsai, J. S. Leslie, L. G. Franko-Tobin, M. C. Prasnal, T. Yang, L. V. Mackey, J. A. Fuselier, D. H. Coy, M. Liu, C. Yu and L. Sun, Valproic acid suppresses cervical cancer tumor progression possibly via activating Notch1 signaling and enhances receptor-targeted cancer chemotherapeutic via activating somatostatin receptor type II, Arch. Gynecol. Obstet. 288 (2013) 393400; https://doi.org/10.1007/s00404-013-2762-7

  • 8. G. Sun, L. V. Mackey, D. H. Coy, C. Y. Yu and L. Sun, The histone deacetylase inhibitor valproic acid induces cell growth arrest in hepatocellular carcinoma cells via suppressing Notch signaling, J. Cancer 6 (2015) 9961004; https://doi.org/10.7150/jca.12135

  • 9. M. Mottamal, S. Zheng, T. L. Huang and G. Wang, Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents, Molecules 20 (2015) 38983941; https://doi.org/10.3390/molecules20033898

  • 10. C. Mercurio, S. Minucci and P. G. Pelicci, Histone deacetylases and epigenetic therapies of hematological malignancies, Pharmacol. Res. 62 (2010) 1834; https://doi.org/10.1016/j.phrs.2010.02.010

  • 11. L. Zhang, Y. Han, Q. Jiang, C. Wang and X. Chen, Trend of histone deacetylase inhibitors in cancer therapy: isoform selectivity or multitargeted strategy, Med. Res. Rev. 35 (2015) 6384; https://doi.org/10.1002/med.21320

  • 12. D. Wang, Y. Jing, S. Ouyang, B. Liu, T. Zhu, H. Niu and Y. Tian, Inhibitory effect of valproic acid on bladder cancer in combination with chemotherapeutic agents in vitro and in vivo, Oncol. Lett. 6 (2013) 14921498; https://doi.org/10.3892/ol.2013.1565

  • 13. X. Yuan, H. Wu, H. Xu, H. Xiong, Q. Chu, S. Yu, G. S. Wu and K. Wu, Notch signaling: an emerging therapeutic target for cancer treatment, Cancer Lett. 369 (2015) 2027; https://doi.org/10.1016/j.canlet.2015.07.048

  • 14. K. Hori, A. Sen and S. Artavanis-Tsakonas, Notch signaling at a glance, J. Cell Sci. 126 (2013) 21352140; https://doi.org/10.1242/jcs.127308

  • 15. L. G. Franko-Tobin, L. V. Mackey and W. Huang, Notch1-mediated tumor suppression in cervical cancer with the involvement of sst signaling and its application in enhanced SSTR-targeted therapeutics, Oncologist 17 (2011) 220232; https://doi.org/10.1634/theoncologist.2011-0269

  • 16. R. Bar-Shavit, M. Maoz, A. Kancharla, J. K. Nag, D. Agranovich, S. Grisaru-Granovsky and B. Uziely, G protein-coupled receptors in cancer, Int. J. Mol. Sci. 17 (2016) 1320 (16 pages); https://doi.org/10.3390/ijms17081320

  • 17. S. P. H. Alexander, A. P. Davenport, E. Kelly, N. Marrion, J. A. Peters, H. E. Benson, E. Faccenda, A. J. Pawson, J. L. Sharman, C. Southan and J. A. Davies, The concise guide to PHARMACOLOGY 2015/16: G protein coupled receptors, Br. J. Pharmacol. 172 (2015) 57445869; https://doi.org/10.1111.bph.13348

  • 18. N. Tarasenko, H. Chekroun-Setti, A. Nudelman and A. Rephaeli, Comparison of the anticancer properties of a novel valproic acid prodrug to leading histone deacetylase inhibitors, J. Cell Biochem. 119 (2018) 34173428; https://doi.org/10.1002/jcb.26512

  • 19. X. Ni, L. Li and G. Pan, HDAC inhibitor-induced drug resistance involving ATP-binding cassette transporters (review), Oncol. Lett. 9 (2015) 515521; https://doi.org/10.3892/ol.2014.2714

  • 20. J. C. Ame, C. Spenlehauer and G. Murcia, The PARP superfamily, BioEssays 26 (2004) 882893; https://doi.org/10.1002/bies.20085

  • 21. M. Terranova-Barberio, M. S. Roca, A. I. Zotti, A. Leone, F. Bruzzese, C. Vitagliano, G. Scogliamiglio, D. Russo, G. D’Angelo, R. Franco, A. Budillon and E. Digennaro, Valproic acid potentiates the anti-cancer activity of capecitabine in vitro and in vivo in breast cancer models via induction of thymidine phosphorylase expression, Oncotarget 7 (2016) 77157731; https://doi.org/10.18632/oncotarget.6802

  • 22. S. Jawed, B. Kim, T. Ottenhof, G. M. Brown, E. S. Werstiuk and L. P. Niles, Human melatonin MT1 receptor induction by valproic acid and its effects in combination with melatonin on MCF-7 breast cancer cell proliferation, Eur. J. Pharmacol. 560 (2007) 1722; https://doi.org/10.1016/j.ejphar.2007.01.022

  • 23. D. Witt, P. Burfeind, S. Hardenberg, L. Opitz, G. Salinas-Riester, F. Bremmer, S. Schweyer, P. Thelen, J. Neesen and S. Kaulfuss, Valproic acid inhibits the proliferation of cancer cells by re-expressing cyclin D2, Carcinogenesis 34 (2013) 11151124; https://doi.org/10.1093/carcin/bgt019

  • 24. H. Fredly, B. T. Gjertsen and O. Bruserud, Histone deacetylase inhibition in the treatment of acute myeloid leukemia: the effects of valproic acid on leukemic cells, and the clinical and experimental evidence for combining valproic acid with other antileukemic agents, Clin. Epigenetics 5 (2013) 12 (13 pages); https://doi.org/10.1186/1868-7083-5-12

  • 25. J. P. Issa, G. Garcia-Manero, X. Huang, J. Cortes, F. Ravandi, E. Jabbour, G. Borthakur, M. Brandt, S. Pierce and H. Kantarjian, Results of phase 2 randomized study of low-dose decitabine with or without valproic acid in patients with myelodysplastic syndrome and acute myelogenous leukemia, Cancer 121 (2015) 556561; https://doi.org/10.1002/cncr.29085

  • 26. G. Garcia-Manero, H. M. Kantarjian, B. Sanchez-Gonzalez, H. Yang, G. Rosner, S. Verstovsek, M. Rytting, W. G. Wierda, F. Ravandi, C. Koller, L. Xiao, S. Faderl, Z. Estrov, J. Cortes, S. O´Brien, E. Estey, C. Bueso-Ramos, J. Fiorentino, E. Jabbour and J. P. Issa, Phase 1/2 study of the combination of 5-aza-2´-deoxycytidine with valproic acid in patients with leukemia, Blood 108 (2006) 32713279; https://doi.org/10.1182/blood-2006-03-009142

  • 27. S. Iwahashi, T. Utsunomiya, S. Imura, Y. Morine, T. Ikemoto, Y. Arakawa, Y. Saito, D. Ishikawa and M. Shimada, Effects of valproic acid in combination with S-1 on advanced pancreatobiliary tract cancers: clinical study phases I/II, Anticancer Res. 34 (2014) 51875192.

  • 28. M. Kobayakawa and Y. Kojima, Tegafur/gimeracil/oteracil (S-1) approved for the treatment of advanced gastric cancer in adults when given in combination with cisplatin: a review comparing it with other fluoropyrimidine-based therapies, Oncol. Targets Ther. 4 (2011) 193201; https://doi.org/10.2147/OTT.S19059

  • 29. B. F. Chu, M. J. Karpenko, Z. Liu, J. Aimiuwu, M. A. Villalona-Calero, K. K. Chan, M. R. Grever and G. A. Otterson, Phase I study of 5-aza-2´-deoxycytidine in combination with valproic acid in non-small-cell lung cancer, Cancer Chemother. Pharmacol. 71 (2013) 115121; https://doi.org/10.1007/s00280-012-1986-8

  • 30. K. Steliou, M. S. Boosalis, S. P. Perrine, J. Sangerman and D. V. Faller, Butyrate histone deacetylase inhibitors, Biores. Open Access 1 (2012) 192198; https://doi.org/10.1089/biores.2012.0223

  • 31. C. Damaskos, N. Garmpis, S. Valsami, M. Kontos, E. Spartalis, T. Kalampokas, E. Kalampokas, D. Moris, A. Daskalopoulou, S. Davakis, G. Tsourouflis, K. Kontzoglou, D. Perrea, N. Nikiteas and D. Dimitroulis, Histone deacetylase inhibitors: An attractive therapeutic strategy against breast cancer, Anticancer Res. 37 (2017) 3546; https://doi.org/10.21873/anticanres.11286

  • 32. M. S. Abaza, A. Afzal and M. Afzal, Short-chain fatty acids are antineoplastic agents, Fatty Acids (2017) 5770; https://doi.org/10.5772/intechopen.68441

  • 33. G. M. Matthews, G. S. Howarth and R. N. Butler, Short-chain fatty acids induce apoptosis in colon cancer cells associated with changes to intracellular redox state and glucose metabolism, Chemotherapy 58 (2012) 102109; https://doi.org/10.1159/000335672

  • 34. J. H. Cho, M. Dimri and G. P. Dimri, MicroRNA-31 is a transcriptional target of histone deacetylase inhibitors and a regulator of cellular senescence, J. Biol. Chem. 290 (2015) 1055510567; https://doi.org/10.1074/jbc.M114.624361

  • 35. P. Vishwakarma, A. Kumar, M. Sharma, M. Garg and K. Saxena, Histone deacetylase inhibitors: pharmacotherapeutic implications as epigenetic modifier, Int. J. Clin. Pharmacol. 3 (2014) 2736; https://doi.org/10.5455/2319-2003.ijbcp20140236

  • 36. M. S. Al-Keilani, K. H. Alzoubi and S. A. Jaradat, The effect of combined treatment with sodium phenylbutyrate and cisplatin, erlotinib, or gefitinib on resistant NSCLC cells, Clin. Pharmacol. 10 (2018) 135140; https://doi.org/10.2147/CPAA.S174074

  • 37. A. R. Z. Almotairy, V. Gandin, L. Morrison, C. Marzan, D. Montagner and A. Erxleban, Antitumor platinum(IV) derivatives of carboplatin and the histone deacetylase inhibitor 4-phenylbutyric acid, J. Inorg. Biochem. 177 (2017) 17; https://doi.org/10.1016/j.jinorgbio.2017.09.009

  • 38. A. Mostoufi, R. Baghgoli and M. Fereidoonnezhad, Synthesis, cytotoxicity, apoptosis and molecular docking studies of novel phenylbutyrate derivatives as potential anticancer agents, Comput. Biol. Chem. 80 (2019) 128137; https://doi.org/10.1016/j.compbiochem.2019.03.008

  • 39. D. J. Morrison and T. Preston, Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism, Gut Microbes 7 (2016) 189200; https://doi.org/10.1080/19490976.2015.11 34082

  • 40. R. Fellows, J. Denizot, C. Stellato, A. Cuomo, P. Jain, E. Stoyanova, S. Balázsi, Z. Hajnády, A. Liebert, J. Kazakevych, H. Blackburn, R. O. Corréa, J. L. Fachi, F. T. Sato, W. R. Ribeiro, C. M. Ferreira, H. Perée, M. Spagnuolo, R. Mattiuz, C. Matoksi, J. Guedes, J. Clark, M, Veldhoen, T. Bonaldi, M. A. R. Vinolo and P. Varga-Weisz, Microbiota derived short chain fatty acids promote histone crotonylation in the colon through histone deacetylases, Nat. Commun. 9 (2018) Article ID 105 (15 pages); https://doi.org/10.1038/s41467-017-02651-5

OPEN ACCESS

Journal + Issues

Search