2-Amino-1,3,4-thiadiazoles as prospective agents in trypanosomiasis and other parasitoses

  • 1 Pharmaceutical Chemistry Department, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania

Abstract

Parasitic diseases are a serious public health problem affecting hundreds of millions of people worldwide. African trypanosomiasis, American trypanosomiasis, leishmaniasis, malaria and toxoplasmosis are the main parasitic infections caused by protozoan parasites with over one million deaths each year. Due to old medications and drug resistance worldwide, there is an urgent need for new antiparasitic drugs. 1,3,4-Thiadiazoles have been widely studied for medical applications. The chemical, physical and pharmacokinetic properties recommend 1,3,4-thiadiazole ring as a target in drug development. Many scientific papers report the antiparasitic potential of 2-amino-1,3,4-thiadiazoles. This review presents synthetic 2-amino-1,3,4-thiadiazoles exhibiting antitrypanosomal, antimalarial and antitoxoplasmal activities. Although there are insufficient results to state the quality of 2-amino-1,3,4-thiadiazoles as a new class of antiparasitic agents, many reported derivatives can be considered as lead compounds for drug synthesis and a promise for the future treatment of parasitosis and provide a valid strategy for the development of potent antiparasitic drugs.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Y. Li, J. Geng, Y. Liu, S. Yu and G. Zhao, Thiadiazole – a promising structure in medicinal chemistry, ChemMedChem 8 (2013) 27–41; https://doi.org/10.1002/cmdc.201200355

  • 2. T. L. Lemke, Antiparasitic Agents, in Foye’s Principles of Medicinal Chemistry (Eds. T. L. Lemke, D. A. Williams, V. F. Roche and S. W. Zito), 7th ed., Lippincott Williams and Wilkins, Baltimore 2013, pp.1126.

  • 3. World Health Organization, Neglected Tropical Diseases. Prevention, Control, Elimination and Eradication, Sixty-six world health assembly A66/20, Provisional agenda item 16.2, 15 March 2013; https://www.who.int/neglected_diseases/A66_20_Eng.pdf; last access date: March 27, 2019

  • 4. P. J. Hotez, The Neglected Tropical Diseases and the Neglected Infections of Poverty: Overview of Their Common Features, Global Disease Burden and Distribution, New Control Tools, and Prospects for Disease Elimination, in Institute of Medicine (US) Forum on Microbial Threats. The Causes and Impacts of Neglected Tropical and Zoonotic Diseases: Opportunities for Integrated Intervention Strategies, National Academies Press, Washington (DC) 2011, A7; last access date March 27, 2019

  • 5. D. Molyneux, Neglected tropical diseases, Community Eye Health J. 26 (2013) 21–24.

  • 6. T. Furst, P. Salari, L. M. Llamas, P. Steinmann, C. Fitzpatrick and F. Tediosi, Global health policy and neglected tropical diseases: then, now and in the years to come, PLoS Negl. Trop. Dis. 11 (2017) e0005759; https://doi.org/10.1371/journal.pntd.0005759

  • 7. F. Pourrajab, S. K. Forouzannia and S. A. Tabatabaee, Novel immunomodulatory function of 1,3,4-thiadiazole derivatives with leishmanicidal activity, J. Antimicrob. Chemother. 67 (2012) 1968–1978; https://doi.org/10.1093/jac/dks144

  • 8. J. A. Joule, Natural Products Containing Nitrogen Heterocycles – Some Highlights 1990-2015, in Advances in Heterocyclic Chemistry: Heterocyclic Chemistry in the 21st Century – A Tribute to Alan Katritzky (Eds. E. F. V. Scriven and C. A. Ramsden), 1st ed., Academic Press, Cambridge (MA) 2016, Vol. 119, pp. 81–106.

  • 9. S. B. A. M. W. Van den Broek, S. A. Meeuwissen, F. L. van Delft and F. P. J. T. Rutjes, Natural Products Containing Medium-Sized Nitrogen Heterocycles Synthesized by Ring-Closing Alkene Metathesis, in Metathesis in Natural Product Synthesis: Strategies, Substrates and Catalysts (Eds. J. Cossy, S. Arseniyadis and C. Meyer), Wiley-VCH, Weinheim 2010, pp. 45–85.

  • 10. F. Diaba, J. A.Montiel, G. Serban and J. Bonjoch, Synthesis of normorphans through an efficient intramolecular carbamoylation of ketones, Org. Lett. 17 (2015) 3860–3863; https://doi.org/10.1021/acs.orglett.5b01832

  • 11. G. Serban, H. Abe and Y. Takeuchi, Synthetic studies of substituted pyridine aldehydes as intermediates for the synthesis of toddaquinoline, its derivatives and other natural products, Heterocycles 83 (2011) 1989–2000; https://doi.org/10.3987/COM-11-12239

  • 12. G. Serban, H. Abe, Y. Takeuchi and T. Harayama, A new approach to the benzopyridoxepine core by metal mediated intramolecular biaryl ether formation, Heterocycles 75 (2008) 2949–2958; https://doi.org/10.3987/COM-08-11443

  • 13. G. Serban, Y. Shigeta, H. Nishioka, H. Abe, Y. Takeuchi and T. Harayama, Studies toward the synthesis of toddaquinoline by intramolecular cyclization, Heterocycles 71 (2007) 1623–1630; https://doi.org/10.3987/COM-07-11062

  • 14. D. Sole, F. Diaba and J. Bonjoch, Nitrogen heterocycles by palladium-catalyzed cyclization of amino-tethered vinyl halides and ketone enolates, J. Org. Chem. 68 (2003) 5746–5749; https://doi.org/10.1021/jo034299q

  • 15. B. Bradshaw, C. Parra and J. Bonjoch, Organocatalyzed asymmetric synthesis of morphans, Org. Lett. 15 (2013) 2458–2461; https://doi.org/10.1021/ol400926p

  • 16. P. K. Shukla, A. Verma and P. Mishra, Significance of Nitrogen Heterocyclic Nuclei in the Search of Pharmacological Active Compounds, in New Perspective in Agricultural and Human Health (Eds. R. P. Shukla, R. S. Mishra, A. D. Tripathi, A. K. Yadav, M. Tiwari and R. R. Mishra), Bharti Publication, New Delhi 2017, pp. 100–126.

  • 17. P. Martins, J. Jesus, S. Santos, L. R. Raposo, C. Roma-Rodrigues, P. V. Baptista and A. R. Fernandes, Heterocyclic anticancer compounds: recent advances and the paradigm shift towards the use of nanomedicine’s tool box, Molecules 20 (2015) 16852–16891; https://doi.org/10.3390/molecules200916852

  • 18. The Top 200 Drugs of 2019; https://clincalc.com/DrugStats/Top200Drugs.aspx; last access date March 29, 2019

  • 19. A. V. Fuentes, M. D. Pineda and K. C. N. Venkata, Comprehension of top 200 prescribed drugs in the US as a resource for pharmacy teaching, training and practice, Pharmacy 6 (2018) 43–52; https://doi.org/10.3390/pharmacy6020043

  • 20. Antiparasitic Drugs (Antiprotozoal Drugs, Nitazoxanide and Ivermectin); https://www.tm.mahidol.ac.th/pediatrics/?q=Antiparasitic-drugs; last access date July 12, 2019

  • 21. J. Keiser, K. Ingram and J. Utzinger, Antiparasitic drugs for paediatrics: systemic review, formulations, pharmacokinetcs, safety, efficacy and implications for control, Parasitology 138 (2011) 1620–1632; https://doi.org/10.1017/S0031182011000023

  • 22. F. Castelli, L. R. Tomasoni and A. Matteelli, Advances in treatment of malaria, Mediterr. J. Hematol. Infect. Dis. 4 (2012) e2012064;https://doi.org/10.4084/MJHID.2012.064

  • 23. S. Rajapakse, P. Weeratunga, C. Rodrigo, N. L. de Silva and S. D. Fernando, Prophylaxis of human toxoplasmosis: a systematic review, Pathog. Glob. Health 111 (2017) 333–342; https://doi.org/10.1080/20477724.2017.1370528

  • 24. M. Yoosefian, Z. J. Chermahini, H. Raissi, A. Mola and M. Sadeghi, A theoretical study on the structure of 2-amino-1,3,4-thiadiazole and its 5-substituted derivatives in the gas phase, water, THF and DMSO solutions, J. Mol. Liq. 203 (2015) 137–142; https://doi.org/10.1016/j.molliq.2015.01.002

  • 25. K. M. Dawood and T. A. Farghaly, Thiadiazole inhibitors: a patent review, Expert Opin. Ther. Pat. 27 (2017) 477–505; https://doi.org/10.1080/13543776.2017.1272575

  • 26. S. Haider, M. S. Alam and H. Hamid, 1,3,4-Thiadiazoles: a potent multi targeted pharmacological scaffold, Eur. J. Med. Chem. 92 (2015) 156–177; https://doi.org/10.1016/j.ejmech.2014.12.035

  • 27. G. Serban, O. Stanasel, E. Serban and S. Bota, 2-Amino-1,3,4-thiadiazole as a potential scaffold for promising antimicrobial agents, Drug Des. Devel. Ther. 12 (2018) 1545–1566; https://doi.org/10.2147/DDDT.S155958

  • 28. M. G. Yang, T. G. M. Dhar, Z. Xiao, H. Y. Xiao, J. J. W. Duan, B. Jiang, M. A. Galella, M. Cunningham, J. Wang, S. Habte, D. Shuster, K. W. McIntyre, J. Carman, D. A. Holloway, J. E. Somerville, S. G. Nadler, L. Salter-Cid, J. C. Barrish and D. S. Weinstein, Improving the pharmacokinetic and CYP inhibition profiles of azaxanthene-based glucocorticoid receptor modulators – Identification of (S)-5-(2-(9-fluoro-2-(4-(2-hydroxypropan-2-yl)phenyl)-5H-chromeno[2,3-b]pyridin-5-yl)-2-methylpropan amido)-N-(tetrahydro-2H-pyran-4-yl)-1,3,4-thiadiazole-2-carboxamide (BMS-341), J. Med. Chem. 58 (2015) 4278–4290; https://doi.org/10.1021/acs.jmedchem.5b00257

  • 29. Y. J. Wu, Five-membered ring systems: with N and S atom, in Progress in Heterocyclic Chemistry (Eds. G. W. Gribble and J. A. Joule), Elsevier, Amsterdam 2017, Vol. 29, pp. 315–335.

  • 30. R. Sink, I. Sosic, M. Zivec, R. Fernandez-Menendez, S. Turk, S. Pajk, D. Alvarez-Gomez, E. M. Lopez-Roman, C. Gonzales-Cortez, J. Rullas-Triconado, I. Angulo-Barturen, D. Barros, L. Ballell-Pages, R. J. Young, L. Encinas and S. Gobec, Design, synthesis and evaluation of new thiadiazole based direct inhibitors of enoyl acyl carrier protein reductase (InhA) for the treatment of tuberculosis, J. Med. Chem. 58 (2015) 613–624;https://doi.org/10.1021/jm501029r

  • 31. F. Hipler, M. Winter and R. A. Fischer, N-HS hydrogen bonding in 2-mercapto-5-methyl-1,3,4-thiadiazole. Synthesis and crystal structures of mercapto functionalized 1,3,4-thiadiazoles, J. Mol. Struct. 658 (2003) 179–191; https://doi.org/10.1016/S0022-2860(03)00386-7

  • 32. Y. Hu, C. Y. Li, X. M. Wang, Y. H. Yang and H. L. Zhu, 1,3,4-Thiadiazole: synthesis, reactions and applications in medicinal, agricultural, and materials chemistry, Chem. Rev. 114 (2014) 5572–5610; https://doi.org/10.1021/cr400131u

  • 33. A. T. Balaban, D. C. Oniciu and A. R. Katritzky, Aromaticity as a cornerstone of heterocyclic chemistry, Chem. Rev. 104 (2004) 2777–2812;https://doi.org/10.1021/cr0306790

  • 34. G. Kornis, Five-membered Rings with More than Two Heteroatoms and Fused Carbocyclic Derivatives, in Comprehensive Heterocyclic Chemistry II (Eds. A. R. Katritzky, C. W. Rees and E. F. V. Scriven), Elsevier, Oxford 1996, Volume 4, pp. 379–408.

  • 35. A. Senff-Ribeiro, A. Echevarria, E. F. Silva, C. R. C. Franco, S. S. Veiga and M. B. M. Oliveira, Cytotoxic effect of a new 1,3,4-thiadiazolium mesoionic compound (MI-D) on cell lines of human mellanoma, Br. J. Cancer 91 (2004) 297–304; https://doi.org/10.1038/sj.bjc.6601946

  • 36. M. M. Ciotti, S. R. Humphreys, J. M. Venditti, N. O. Kaplan and A. Goldin, The antileukemic action of two thiadiazole derivatives, Cancer Res. 20 (1960) 1195–1201.

  • 37. M. Juszczak, J. Matysiak, W. Brzana, A. Niewiadomy and W. Rzeski, Evaluation of antiproliferative activity of 2-(monohalogenophenylamino)-5-(2, 4-dihydroxyphenyl)-1,3,4-thiadiazoles, Arzneim. Forsch. Drug Res. 58 (2008) 353–357; https://doi.org/10.1055/s-0031-1296519

  • 38. J. Matysiak, Evaluation of antiproliferative effect in vitro of some 2-amino-5-(2, 4-dihydroxyphenyl)-1,3,4-thiadiazole derivatives, Chem. Pharm. Bull. 54 (2006) 988–991; https://doi.org/10.1248/cpb.54.988

  • 39. J. Matysiak and A. Opolski, Synthesis and antiproliferative activity of N-substituted 2-amino-5-(2,4-dihydroxyphenyl)-1,3,4-thiadiazoles, Bioorg. Med. Chem. 14 (2006) 4483–4489; https://doi.org/10.1016/j.bmc.2006.02.027

  • 40. W. Rzeski, J. Matysiak and M. Kandefer-Szerszen, Anticancer, neuroprotective activities and computational studies of 2-amino-1,3,4-thiadiazole based compound, Bioorg. Med.Chem. 15 (2007) 3201–3207; https://doi.org/10.1016/j.bmc.2007.02.041

  • 41. R. Asbury, J. A. Blessing and D. Moore, A phase II trial of aminothiadiazole in patients with mixed mesodermal tumors of the uterine corpus: a gynecologic oncology group study, Am. J. Clin. Oncol. 19 (1996) 400–402.

  • 42. P. L. Elson, L. K. Kvols, S. E. Vogl, D. J. Glover, R. G. Hahn and D. L. Trump, Phase II trials of 5-day vinblastine infusion (NSC 49842), L-alanosine (NSC153353), acivicin (NSC 163501), and aminothiadiazole (NSC 4728) in patients with recurrent or metastatic renal cell carcinoma, Invest. New Drugs 6 (1988) 97–103.

  • 43. P. F. Engstrom, L. M. Ryan, G. Falkson and D. G. Haller, Phase II study of aminothiadiazole in advanced squamous cell carcinoma of the esophagus, Am. J. Clin. Oncol. 14 (1991) 33–35.

  • 44. G. Y. Locker, L. Kilton, J. D. Khandekar, T. E. Lad, R. H. Knop, K. Albain, R. Blough, S. French and A. B. Benson, High-dose aminothiadiazole in advanced colorectal cancer. An Illinois Cancer Center phase II trial, Invest. New Drugs 12 (1994) 299–301.

  • 45. I. H. Krakoff, Purine metabolism in the chick embryo: influence of 2-substituted thiadiazoles, Biochem. Pharmacol. 13 (1964) 449–459; https://doi.org/10.1016/0006-2952(64)90165-0

  • 46. H. F. Oettgen, J. A. Reppert, V. Coley and J. H. Burchenal, Effects of nicotinamide and related compounds on the antileukemic activity of 2-amino-1,3,4-thiadiazole, Cancer Res. 20 (1960) 1597–1601.

  • 47. D. M. Shapiro, M. E. Shils, R. A. Fugmann andI. M. Friedland, Quantitative biochemical differences between tumor and host as a basis for cancer chemotherapy IV. Niacin and 2-ethylamino-1,3,4-thiadiazole, Cancer Res. 17 (1957) 29–33.

  • 48. G. Serban, Future prospects in the treatment of parasitic diseases: 2-amino-1,3,4-thiadiazoles in leishmaniasis, Molecules 24 (2019) 1557–1578; https://doi.org/10.3390/molecules24081557

  • 49. G. Serban, 5-Arylamino-1,3,4-thiadiazol-2-yl acetic acid esters as intermediates for the synthesis of new bisheterocyclic compounds, Farmacia 63 (2015) 146–149.

  • 50. T. Horvath, G. Serban and S. Cuc, Synthesis of new 2-phenylamino-5-[(α-acylamino)-p-X-stiryl]-1,3,4-thiadiazole compounds, Farmacia 62 (2014) 422–427.

  • 51. G. Serban, A. Suciu, M. Coman and E. Curea, Synthesis and physical-chemical study of some 3-(5-arylamino-1,3,4-thiadiazol-2-yl)coumarins, Farmacia 50 (2002) 50–54.

  • 52. G. Serban, M. Coman and E. Curea, Synthesis of some heterocyclic nitrocoumarins by Knoevenagel condensation, Farmacia 53 (2005) 78–84.

  • 53. G. Serban, D. Matinca, O. Bradea, L. Gherman, M. Coman and E. Curea, The study of the biological activity of some heterocyclic coumarins, Farmacia 53 (2005) 91–99.

  • 54. G. Serban, M. Coman, E. Curea and L. Proinov, Synthesis and description of some heterocyclic coumarins, Farmacia 49 (2001) 45–52.

  • 55. World Health Organization, Integrating Neglected Tropical Diseases Into Global Health and Development: Fourth WHO Report on Neglected Tropical Diseases, WHO, Geneva, 19 April 2017, licence: CC BY-NC-SA 3.0 IGO; https://apps.who.int/iris/bitstream/handle/10665/255011/9789241565448-eng.pdf;jsessionid=9AA10810B00430B8A67751281F4AEFDD?sequence=1; last access date March 27, 2019

  • 56. World Health Organization, WHO Dept. of Control of Neglected Tropical Diseases, Working to Overcome the Global Impact of Neglected Tropical Diseases: First WHO Report on Neglected Tropical Diseases, WHO Press, Geneva 2010; https://apps.who.int/iris/bitstream/handle/10665/44440/9789241564090_eng.pdf;jsessionid=FADC468AEF33A190CEC5CAB713DAAB9F?sequence=1; last access date September 25, 2017

  • 57. J. A. Chandler and P. M. James, Discovery of trypanosomatid parasites in globally distributed Drosophila species, PLoS ONE 8 (2013) e61937; https://doi.org/10.1371/journal.pone.0061937

  • 58. P. Linciano, A. Dawson, I. Poohner, D. M. Costa, M. S. Sa, A. Cordeiro-da-Silva, R. Luciani, S. Gul, G. Witt, B. Ellinger, M. Kuzikov, P. Gribbon, J. Reinshagen, M. Wolf, B. Behrens, V. Hannaert, P. A. M. Michels, E. Nerini, C. Pozzi, F. di Pisa, G. Landi, N. Santarem, S. Ferrari, P. Saxena, S. Lazzari, G. Cannazza, L. H. Freitas-Junior, C. B. Moraes, B. S. Pascoalino, L. M. Alcantara, C. P. Bertolacini, V. Fontana, U. Wittig, W. Muller, R. C. Wade, W. N. Hunter, S. Mangani, L. Costantino and M. P. Costi, Exploiting the 2-amino-1,3,4-thiadiazole scaffold to inhibit Trypanosoma brucei pteridine reductase in support of early-stage drug discovery, ACS Omega 2 (2017) 5666−5683; https://doi.org/10.1021/acsomega.7b00473

  • 59. K. T. Andrews, G. Fisher and T. S. Skinner-Adams, Drug repurposing and human parasitic protozoan diseases, Int. J. Parasitol. Drugs Drug Resist. 4 (2014) 95–111; https://doi.org/10.1016/j.ijpddr.2014.02.002

  • 60. World Health Organization, Neglected Tropical Diseases; http://www.who.int/neglected_diseases/diseases/en/; last access date July 21, 2018

  • 61. S. Patterson and S. Wyllie, Nitro drugs for the treatment of trypanosomatid diseases: past, present, and future prospects, Trend Parasitol. 30 (2014) 289–298; https://doi.org/10.1016/j.pt.2014.04.003

  • 62. World Health Organization, Chagas Disease in the Americas: A Review of the Current Public Health Situation and a Vision for the Future. Report: Conclusions and Recommendations, Washington, D.C., 3-4 May 2018; https://www.paho.org/hq/index.php?option=com_content&view=article&id=14399:enfermedad-chagas-en-americas-revision-de-situacion-vision-futuro&Itemid=72315&lang=en; last access date July 17, 2018

  • 63. C. J. Schofield and J. P. Kabayo, Trypanosomiasis vector control in Africa and Latin America, Parasit. Vectors 1 (2008) Article ID 24 (7 pages); https://doi.org/10.1186/1756-3305-1-24

  • 64. A. K. Jain, S. Sharma, A. Vaidya, V. Ravichandran and R. K. Agrawal, 1,3,4-Thiadiazole and its derivatives: a review on recent progress in biological activities, Chem. Biol. Drug Des. 81 (2013) 557–576; https://doi.org/10.1111/cbdd.12125

  • 65. S. Tomlinson, F. Vandekerckhove, U. Frevert and V. Nussenzweig, The induction of Trypanosoma cruzi trypomastigote transformation by low pH, Parasitology 110 (1995) 547–554; https://doi.org/10.1017/S0031182000065264

  • 66. A. S. Nagle, S. Khare, A. B. Kumar, F. Supek, A. Buchynskyy, C. J. N. Mathison, N. K. Chennamaneni, N. Pendem, F. S. Buckner, M. H. Gelb and V. Molteni, Recent developments in drug discovery for leishmaniasis and human African trypanosomiasis, Chem. Rev. 114 (2014) 11305–11347; https://doi.org/10.1021/cr500365f

  • 67. Centers for Disease Control and Prevention, Parasites, African trypanosomiasis; https://www.cdc.gov/parasites/sleepingsickness/biology.html; last access date May 9, 2019

  • 68. Parasites in humans, Trypanosoma brucei – sleeping sickness; http://www.parasitesinhumans.org/trypanosoma-brucei-sleeping-sickness.html; last access date May 9, 2019

  • 69. World Health Organization, Human African Trypanosomiasis, Symptoms, Diagnosis and Treatment; http://www.who.int/trypanosomiasis_african/disease/diagnosis/en/; last access date November 1st, 2018

  • 70. World Health Organization, Trypanosomiasis; http://www.who.int/ith/diseases/trypanosomiasis/en/; last access date November 1, 2018

  • 71. World Health Organization, Chagas Disease (American Trypanosomiasis), 1 February 2018; http://www.who.int/news-room/fact-sheets/detail/chagas-disease-(american-trypanosomiasis); last access date July 24, 2018

  • 72. World Health Organization, Chagas Disease: Control and Elimination, Sixty-third World Health Assembly, 22 April 2010; http://apps.who.int/gb/ebwha/pdf_files/WHA63/A63_17-en.pdf; last access date November 1, 2018

  • 73. S. Pund and A. Joshi, Nanoarchitectures for Neglected Tropical Diseases: Challenges and State of the Art, in Nano- and Microscale Drug Delivery Systems: Design and Fabrication (Ed. A. M. Grumezescu), 1st ed., Elsevier, Amsterdam 2017, pp. 449.

  • 74. J. D. Maya, S. Bollo, L. J. Nunez-Vergara, J. A. Squella, Y. Repetto, A. Morello, J. Perie and G. Chauviere, Trypanosoma cruzi: effect and mode of action of nitroimidazole and nitrofuran derivatives, Biochem. Pharmacol. 65 (2003) 999–1006; https://doi.org/10.1016/S0006-2952(02)01663-5

  • 75. A. Silva de Carvalho, K. Salomao, S. Lisboa de Castro, T. R. Conde, H. P. da Silva Zamith, E. R. Caffarena, B. S. Hall, S. R. Wilkinson and N. Boechat, Megazol and its bioisostere 4H-1,2,4-triazole: comparing the trypanocidal, cytotoxic and genotoxic activities and their in vitro and in silico interactions with the Trypanosoma brucei nitroreductase enzyme, Mem. Inst. Oswaldo Cruz 109 (2014) 315–323; https://doi.org/10.1590/0074-0276140497

  • 76. B. Bouteille, A. Marie-Daragon, G. Chauviere, C. de Albuquerque, B. Enanga, M. L. Darde, J. M. Vallat, J. Perie and M. Dumas, Effect of megazol on Trypanosoma brucei brucei acute and subacute infections in Swiss mice, Acta Tropica 60 (1995) 73–80; https://doi.org/10.1016/0001-706X(95)00109-R

  • 77. G. Chauviere, B. Bouteille, B. Enanga, C. de Albuquerque, S. L. Croft, M. Dumas and J. Perie, Synthesis and biological activity of nitro heterocycles analogous to megazol, a trypanocidal lead, J. Med. Chem. 46 (2003) 427–440; https://doi.org/10.1021/jm021030a

  • 78. S. R. Wilkinson and J. M. Kelly, Trypanocidal drugs: mechanisms, resistance and new targets, Expert Rev. Mol. Med. 11 (2009) e31; https://doi.org/10.1017/S1462399409001252

  • 79. B. Enanga, M. R. Ariyanayagam, M. L. Stewart and M. P. Barrett, Activity of megazol, a trypanocidal nitroimidazole, is associated with DNA damage, Antimicrob. Agents Chemother. 47 (2003) 3368–3370; https://doi.org/10.1128/AAC.47.10.3368-3370.2003

  • 80. H. B. Leites, F. S. Damasceno, A. M. Silber, R. Z. Mendonca and C. N. Albuquerque, Synthesis and evaluation of trypanosomicidal activity of new derivatives of megazol, Pharm. Biol. Eval. 5 (2018) 40–51.

  • 81. T. J. Vickers and S. M. Beverley, Folate metabolic pathways in Leishmania, Essays Biochem. 51 (2011) 63–80; https://doi.org/10.1042/bse0510063

  • 82. N. Sienkiewicz, H. B. Ong and A. H. Fairlamb, Trypanosoma brucei pteridine reductase 1 is essential for survival in vitro and for virulence in mice, Mol. Microbiol. 77 (2010) 658–671; https://doi.org/10.1111/j.1365-2958.2010.07236.x

  • 83. H. B. Ong, N. Sienkiewicz, S. Wyllie and A. H. Fairlamb, Dissecting the metabolic roles of pteridine reductase 1 in Trypanosoma bruceiand Leishmania major, J. Biol. Chem. 286 (2011) 10429–10438; https://doi.org/10.1074/jbc.M110.209593

  • 84. S. Ferrari, F. Morandi, D. Motiejunas, E. Nerini, S. Henrich, R. Luciani, A. Venturelli, S. Lazzari, S. Calo, S. Gupta, V. Hannaert, P. A. M. Michels, R. C. Wade and M. P. Costi, Virtual screening identification of nonfolate compounds, including a CNS drug, as antiparasitic agents inhibiting pteridine reductase, J. Med. Chem. 54 (2011) 211–221; https://doi.org/10.1021/jm1010572

  • 85. A. Dawson, F. Gibellini, N. Sienkiewicz, L. B. Tulloch, P. K. Fyfe, K. McLuskey, A. H. Fairlamb and W. N. Hunter, Structure and reactivity of Trypanosoma brucei pteridine reductase: inhibition by the archetypal antifolate methotrexate, Mol. Microbiol. 61 (2006) 1457–1468; https://doi.org/10.1111/j.1365-2958.2006.05332.x

  • 86. D. Spinks, H. B. Ong, C. P. Mpamhanga, E. J. Shanks, D. A. Robinson, I. T. Collie, K. D. Read, J. A. Frearson, P. G. Wyatt, R. Brenk, A. H. Fairlamb and I. H. Gilbert, Design, synthesis and biological evaluation of novel inhibitors of Trypanosoma brucei pteridine reductase 1, Chem. Med. Chem. 6 (2011) 302–308; https://doi.org/10.1002/cmdc.201000450

  • 87. B. Nare, J. Luba, L. W. Hardy and S. Beverley, New approaches to Leishmania chemotherapy: pteridine reductase 1 (PTR1) as a target and modulator of antifolate sensitivity, Parasitology 114 (1997) S101–S110.

  • 88. A. Cavazzuti, G. Paglietti, W. N. Hunter, F. Gamarro, S. Piras, M. Loriga, S. Allecca, P. Corona, K. McLuskey, L. Tulloch, F. Gibellini, S. Ferrari and M. P. Costi, Discovery of potent pteridine reductase inhibitors to guide antiparasite drug development, Proc. Natl. Acad. Sci. USA 105 (2008) 1448–1453; https://doi.org/10.1073/pnas.0704384105

  • 89. R. F. Rodrigues, D. Castro-Pinto, A. Echevarria, C. M. dos Reis, C. N. Del Cistia, C. M. R. Sant’Anna, F. Teixeira, H. Castro, M. Canto-Cavalheiro, L. L. Leon and A. Tomas, Investigation of trypanothione reductase inhibitory activity by 1,3,4-thiadiazolium-2-aminide derivatives and molecular docking studies, Bioorg. Med. Chem. 20 (2012) 1760–1766; https://doi.org/10.1016/j.bmc.2012.01.009

  • 90. G. Colotti, P. Baiocco, A. Fiorillo, A. Boffi, E. Poser, F. Di Chiaro and A. Ilari, Structural insights into the enzymes of the trypanothione pathway: Targets for antileishmaniasis drugs, Future Med. Chem. 5 (2013) 1861–1875; https://doi.org/10.4155/fmc.13.146

  • 91. M. O. F. Khan, Trypanothione reductase: A viable chemotherapeutic target for antitrypanosomal and antileishmanial drug design, Drug Target Insights 2 (2007) 129–146; https://doi.org/10.1177/117739280700200007

  • 92. D. Benítez, A. Medeiros, L. Fiestas, E. A. Panozzo-Zenere, F. Maiwald, K. C. Prousis, M. Roussaki, T. Calogeropoulou, A. Detsi, T. Jaeger, J. Šarlauskas, L. P. Mašič, C. Kunick, G. R. Labadie, L. Flohé and M. A. Comini, Identification of novel chemical scaffolds inhibiting trypanothione synthetase from pathogenic trypanosomatids, PLoS Negl. Trop. Dis. 10 (2016) e0004617 (25 pages); https://doi.org/10.1371/journal.pntd.0004617

  • 93. A. Ilari, A. Fiorillo, I. Genovese and G. Colotti, An update on structural insights into the enzymes of the polyamine-trypanothione pathway: targets for new drugs against leishmaniasis, Future Med. Chem. 9 (2017) 61–77; https://doi.org/10.4155/fmc-2016-0180

  • 94. V. Olin-Sandoval, Z. Gonzalez-Chavez, M. Berzunza-Cruz, I. Martinez, R. Jasso-Chavez, I. Becker, B. Espinoza, R. Moreno-Sanchez and E. Saavedra, Drug target validation of the trypanothione pathway enzymes through metabolic modeling, FEBS J. 279 (2012) 1811–1833; https://doi.org/10.1111/j.1742-4658.2012.08557.x

  • 95. R. F. Rodrigues, E. F. da Silva, A. Echevarria, R. Fajardo-Bonin, V. F. Amaral, L. L. Leon and M. Canto-Cavalheiro, A comparative study of mesoionic compounds in Leishmania sp. and toxicity evaluation, Eur. J. Med. Chem. 42 (2007) 1039–1043; https://doi.org/10.1016/j.ejmech.2006.12.026

  • 96. R. F. Rodrigues, K. S. Charret, E. F. da Silva, A. Echevarria, V. F. Amaral, L. L. Leon and M. Canto-Cavalheiro, Antileishmanial activity of 1,3,4-thiadiazolium-2-aminide in mice infected with Leishmania amazonensis, Antimicrob. Agents Chemother. 53 (2009) 839–842; https://doi.org/10.1128/AAC.00062-08

  • 97. D. Spinks, L. S. Torrie, S. Thompson, J. R. Harrison, J. A. Frearson, K. D. Read, A. H. Fairlamb, P. G. Wyatt and I. H. Gilbert, Design, synthesis and biological evaluation of Trypanosoma brucei trypanothione synthetase inhibitors, Chem. Med. Chem. 7 (2012) 95–106; https://doi.org/10.1002/cmdc.201100420

  • 98. A. F. Sousa, A. G. Gomes-Alves, D. Benitez, M. A. Comini, L. Flohe, T. Jaeger, J. Passos, F. Stuhlmann, A. M. Tomas and H. Castro, Genetic and chemical analyses reveal that trypanothione synthetase but not glutathionylspermidine synthetase is essential for Leishmania infantu, Free Radic. Biol. Med. 73 (2014) 229–238; https://doi.org/10.1016/j.freeradbiomed.2014.05.007

  • 99. P. K. Fyfe, S. L. Oza, A. H. Fairlamb and W. N. Hunter, Leishmania trypanothione synthetaseamidase structure reveals a basis for regulation of conflicting synthetic and hydrolytic activities, J. Biol. Chem. 283 (2008) 17672–17680; https://doi.org/10.1074/jbc.M801850200

  • 100. W. da Silva Ferreira, L. Freire-de-Lima, V. Barbosa Saraiva, F. Alisson-Silva, L. Mendonca-Previato, J. O. Previato, A. Echevarria and M. E. Freire de Lima, Novel 1,3,4-thiadiazolium-2-phenylamine chlorides derived from natural piperine as trypanocidal agents: chemical and biological studies, Bioorg. Med. Chem. 16 (2008) 2984–2991; https://doi.org/10.1016/j.bmc.2007.12.049

  • 101. A. Tahghighi and F. Babalouei, Thiadiazoles: the appropriate pharmacological scaffolds with leishmanicidal and antimalarial activities: a review, Iran. J. Basic Med. Sci. 20 (2017) 613–622; https://doi.org/10.22038/IJBMS.2017.8828

  • 102. World Health Organization, World Malaria Report 2018, World Health Organization, Geneva 2018, Licence: CC BY-NC-SA 3.0 IGO, ISBN 978-92-4-156565-3; https://apps.who.int/iris/bitstream/handle/10665/275867/9789241565653-eng.pdf; last access date November 29, 2018

  • 103. World Health Organization, Malaria Vaccine: WHO Position Paper – January 2016, Weekly Epidemiological Record 91 (2016) 33–52; https://www.who.int/wer; last access date June 8, 2019

  • 104. World Health Organization, Malaria, 19 November 2018; http://www.who.int/en/news-room/fact-sheets/detail/malaria; last access date November 29, 2018

  • 105. World Health Organization, First Malaria Vaccine in Africa: A Potential New Tool for Child Health and Improved Malaria Control, WHO/CDS/GMP/2018.05; https://www.who.int/malaria/publications/atoz/first-malaria-vaccine/en/; last access date June 8, 2019

  • 106. World Health Organization, Short Overview of the Malaria Vaccine Implementation Programme, April 2019; https://www.who.int/malaria/media/malaria-vaccine-overview/en/; last access date June 8, 2019

  • 107. L. Foquet, C. Hermsen, G. J. van Gemert, E. Van Braeckel, K. Weening, R. Sauerwein, P. Meuleman and G. Leroux-Roels, Vaccine-induced monoclonal antibodies targeting circumsporozoite protein prevent Plasmodium falciparum infection, J. Clin. Invest. 124 (2014) 140–144; https://doi.org/10.1172/JCI70349

  • 108. World Health Organization, Malaria Vaccine Implementation Programme (MVIP); https://www.who.int/immunization/diseases/malaria/malaria_vaccine_implementation_programme/about/en/; last access date June 8, 2019

  • 109. World Health Organization, Malaria Vaccine Pilot Launched in Malawi. Country First of Three in Africa to Roll Out Landmark Vaccine, Geneva 23 April 2019; https://www.who.int/news-room/detail/23-04-2019-malaria-vaccine-pilot-launched-in-malawi; last access dateJune 8, 2019

  • 110. E. A. Ashley and A. P. Phyo, Drugs in development for malaria, Drugs 78 (2018) 861–879; https://doi.org/10.1007/s40265-018-0911-9

  • 111. P. B. Bloland and H. A. Williams, Malaria Control During Mass Population Movements and Natural Disasters, National Academies Press, Washington (DC) 2002, pp. 145–150.

  • 112. V. M. Avery, S. Bashyam, J. N. Burrows, S. Duffy, G. Papadatos, S. Puthukkuti, Y. Sambandan, S. Singh, T. Spangenberg, D. Waterson and P. Willis, Screening and hit evaluation of a chemical library against blood-stage Plasmodium falciparum, Malar. J. 13 (2014) Article ID 190 (12 pages); https://doi.org/10.1186/1475-2875-13-190

  • 113. E. G. Severance, J. Xiao, L. Jones-Brando, S. Sabunciyan, Y. Li, M. Pletnikov, E. Prandovszky and R. Yolken, Toxoplasma gondii – a gastrointestinal pathogen associated with human brain diseases, Int. Rev. Neurobiol. 131 (2016) 143–163; https://doi.org/10.1016/bs.irn.2016.08.008

  • 114. P. R. Torgerson and P. Mastroiacovo, The global burden of congenital toxoplasmosis: a systematic review, Bull. World Health Organ. 91 (2013) 501–508.

  • 115. M. Pan, C. Lyu, J. Zhao and B. Shen, Sixty years (1957-2017) of research on toxoplasmosis in China – an overview, Front. Microbiol. 8 (2017) 1–16; https://doi.org/10.3389/fmicb.2017.01825

  • 116. World Health Organization, Toxoplasmosis: Greater Awareness Needed; http://www.euro.who.int/en/health-topics/disease-prevention/food-safety/news/news/2016/11/toxoplasmosis-greater-awareness-needed; last access date November 23, 2018

  • 117. K. Dzitko, A. Paneth, T. Plech, J. Pawelczyk, P. Staczek, J. Stefanska and P. Paneth, 1,4-Disubstituted thiosemicarbazide derivatives are potent inhibitors of Toxoplasma gondii proliferation, Molecules 19 (2014) 9926–9943; https://doi.org/10.3390/molecules19079926

  • 118. J. M. Furtado, J. R. Smith, R. Belfort, D. Gattey and K. L. Winthrop, Toxoplasmosis: a global threat, J. Global Infect. Dis. 3 (2011) 281–284; https://doi.org/10.4103/0974-777X.83536

  • 119. R. P. Tenorio, C. S. Carvalho, C. S. Pessanha, J. G. de Lima, A. R. de Faria, A. J. Alves, E. J. T. de Melo and A. J. S. Goes, Synthesis of thiosemicarbazone and 4-thiazolidinone derivatives and their in vitro anti-Toxoplasma gondii activity, Bioorg. Med. Chem. Lett. 15 (2005) 2575–2578; https://doi.org/10.1016/j.bmcl.2005.03.048

  • 120. T. M. de Aquino, A. P. Liesen, R. E. A. da Silva, V. T. Lima, C. S. Carvalho, A. R. de Faria, J. M. de Araujo, J. G. de Lima, A. J. Alves, E. J. T. de Melo and A. J. S. Goes, Synthesis, anti-Toxoplasma gondii and antimicrobial activities of benzaldehyde 4-phenyl-3-thiosemicarbazones and 2-[(phenylmethylene)hydrazono]-4-oxo-3-phenyl-5-thiazolidineacetic acids, Bioorg. Med. Chem. 16 (2008) 446–456; https://doi.org/10.1016/j.bmc.2007.09.025

  • 121. A. P. Liesen, T. M. de Aquino, C. S. Carvalho, V. T. Lima, J. M. de Araujo, J. G. de Lima, A. R. de Faria, E. J. T. de Melo, A. J. Alves, E. W. Alves, A. Q. Alves and A. J. S. Goes, Synthesis and evaluation of anti-Toxoplasma gondii and antimicrobial activities of thiosemicarbazides, 4-thiazolidinones and 1,3,4-thiadiazoles, Eur. J. Med. Chem. 45 (2010) 3685–3691; https://doi.org/10.1016/j.ejmech.2010.05.017

  • 122. L. Monzote and A. Siddiq, Drug development to protozoan diseases, Open Med. Chem. J. 5 (2011) 1–3; https://doi.org/10.2174/1874104501105010001

OPEN ACCESS

Journal + Issues

Search