Beneficial effects of baicalein on a model of allergic rhinitis

Tao Liu 1 , 2 , Jing Xu 2 , Yungang Wu 2 , Xiaoxia Li 2 , Detao Ding 2 , Dengdian Ma 2 , Mengwei Yao 2 , Wenzhong Wei 2 , Wei Zhang 4 , Shaohua Wang 2 , Jing Yao 3  and Xiaoyu Li 1 , 2
  • 1 School of Clinical Medicine, Jining, China
  • 2 Affiliated Hospital of Jining Medical University, Jining, China
  • 3 School of Basic Medicine, Jining, China
  • 4 People’s Hospital of Hengshui, Hengshui, China

Abstract

Allergic rhinitis (AR) is a common disease that causes severe inflammation and even disabilities. Previous studies have reported baicalein to have an anti-inflammatory effect. However, the pharmacological action of baicalein on anaphylaxis has not been clarified yet. This study assessed the in vivo protective effect of baicalein post-treatment in an ameliorating ovalbumin (OVA)-sensitized AR rat model. Baicalein attenuated histological alterations, aberrant tissue repair and inflammation after OVA-induced AR. Baicalein reduced the frequency of nasal/ear rubs and sneezes in rats, and inhibited generation of several inflammatory cytokines (TNF-α, IL-1β, and IL-6) in both blood and nasal lavage of rats. Infiltrations of eosinophils, lymphocyte, and neutrophils were decreased in baicalein-administered rats. Furthermore, baicalein inhibited the expression of STAT3 phosphorylation in the nasal mucosa. In summary, baicalein attenuated OVA-induced AR and inflammation, which suggests it as a promising therapeutic agent for the alleviation of AR-associated inflammation and pathology.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. C. A. Tharpe and S. F. Kemp, Pediatric allergic rhinitis, Immunol. Allergy Clin. North Am. 35 (2015) 185–198; http://doi.org/10.1016/j.iac.2014.09.003

  • 2. Y. K. Yanov, S. V. Ryazantsev, S. A. Artyushkin, I. V. Fanta and S. S. Pavlova, Allergic rhinitis: the modern aspects of therapy, Vestn. Otorinolaringol. 83 (2018) 56–60; http://doi.org/10.17116/otorino201883356

  • 3. T. Ozdoganoglu, M. Songu and H. M. Inancli, Quality of life in allergic rhinitis, Ther. Adv. Respir. Dis. 6 (2012) 25–39; http://doi.org/10.1177/1753465811424425

  • 4. P. W. Hellings and W. J. Fokkens, Allergic rhinitis and its impact on otorhinolaryngology, Allergy 61 (2006) 656–664; http://doi.org/10.1111/j.1398-9995.2006.01109.x

  • 5. P. C. Bahekar, J. H. Shah, U. B. Ayer, S. N. Mandhane and R. Thennati, Validation of guinea pig model of allergic rhinitis by oral and topical drugs, Int. Immunopharmacol. 8 (2008) 1540–1551; http://doi.org/10.1016/j.intimp.2008.06.010

  • 6. C. Cuppari, S. Leonardi, S. Manti, M. Filippelli, T. Alterio, L. Spicuzza, L. Rigoli, T. Arrigo, V. Lougaris and C. Salpietro, Allergen immunotherapy, routes of administration and cytokine networks: an update, Immunotherapy 6 (2014) 775–786; http://doi.org/10.2217/imt.14.47

  • 7. T. T. Bui, C. H. Piao, C. H. Song and O. H. Chai, Skullcapflavone II attenuates ovalbumin-induced allergic rhinitis through the blocking of Th2 cytokine production and mast cell histamine release, Int. Immunopharmacol. 52 (2017) 77–84; http://doi.org/10.1016/j.intimp.2017.08.029

  • 8. P. C. Wei, L. Tong and R. Li, Effect of RORC inhibitor on HIF-1alpha and VEGF in nasal mucosa of allergic rhinitis of mice, Chin. J. Otorhinolaryngol. Head Neck Surg. 53 (2018) 751–756; http://doi.org/10.3760/cma.j.issn.1673-0860.2018.10.007

  • 9. S. Qu, T. Qin, M. Li, S. Zhang, L. Ye, J. Wei, H. Fan and B. Chen, The effects of resiquimod in an ovalbumin-induced allergic rhinitis model, Int. Immunopharmacol. 59 (2018) 233–242; http://doi.org/10.1016/j.intimp.2018.04.015

  • 10. J. Yao, D. Pan, Y. Zhao, L. Zhao, J. Sun, Y. Wang, Q. D. You, T. Xi, Q. L. Guo and N. Lu, Wogonin prevents lipopolysaccharide-induced acute lung injury and inflammation in mice via peroxisome proliferator-activated receptor gamma-mediated attenuation of the nuclear factor-kappaB pathway, Immunology 143 (2014) 241–257; http://doi.org/10.1111/imm.12305

  • 11. T. T. Bui, C. H. Piao, C. H. Song, C. H. Lee, H. S. Shin and O. H. Chai, Baicalein, wogonin, and Scutellaria baicalensis ethanol extract alleviate ovalbumin-induced allergic airway inflammation and mast cell-mediated anaphylactic shock by regulation of Th1/Th2 imbalance and histamine release, Anat. Cell Biol. 50 (2017) 124–134; http://doi.org/10.5115/acb.2017.50.2.124

  • 12. H. Yin, L. Huang, T. Ouyang and L. Chen, Baicalein improves liver inflammation in diabetic db/db mice by regulating HMGB1/TLR4/NF-kappaB signaling pathway, Int. Immunopharmacol. 55 (2018) 55–62; http://doi.org/10.1016/j.intimp.2017.12.002

  • 13. S. K. Ku and J. S. Bae, Baicalin, baicalein and wogonin inhibits high glucose-induced vascular inflammation in vitro and in vivo, BMB Rep. 48 (2015) 519–524; http://doi.org/10.5483/BMBRep.2015.48.9.017

  • 14. T. Hong, G. B. Jin, S. Cho and J. C. Cyong, Evaluation of the anti-inflammatory effect of baicalein on dextran sulfate sodium-induced colitis in mice, Planta Med. 68 (2002) 268–271; http://doi.org/10.1055/s-2002-23143

  • 15. X. Luo, Z. Yu, C. Deng, J. Zhang, G. Ren, A. Sun, S. Mani, Z. Wang and W. Dou, Baicalein ameliorates TNBS-induced colitis by suppressing TLR4/MyD88 signaling cascade and NLRP3 inflammasome activation in mice, Sci. Rep. 7 (2017) 16374; http://doi.org/10.1038/s41598-017-12562-6

  • 16. C. L. Tsai, Y. C. Lin, H. M. Wang and T. C. Chou, Baicalein, an active component of Scutellaria baicalensis, protects against lipopolysaccharide-induced acute lung injury in rats, J. Ethnopharmacol. 153 (2014) 197–206; http://doi.org/10.1016/j.jep.2014.02.010

  • 17. Z. F. Li, X. M. Xia, C. Huang, S. Zhang, J. Zhang and A. J. Zhang, Emodin and baicalein inhibit pancreatic stromal derived factor-1 expression in rats with acute pancreatitis, Hepatobiliary Pancreat. Dis. Int. 8 (2009) 201–208; http://doi.org/10.1111/j.1523-5378.2009.00663.x

  • 18. H. G. Xin, B. B. Zhang, Z. Q. Wu, X. F. Hang, W. S. Xu, W. Ni, R. Q. Zhang and X. H. Miao, Treatment with baicalein attenuates methionine-choline deficient diet-induced non-alcoholic steato-hepatitis in rats, Eur. J. Pharmacol. 738 (2014) 310–318; http://doi.org/10.1016/j.ejphar.2014.06.006

  • 19. J. Deng, Y. Liu, H. Lee, A. Herrmann, W. Zhang, C. Zhang, S. Shen, S. J. Priceman, M. Kujawski, S. K. Pal, A. Raubitschek, D. S. Hoon, S. Forman, R. A. Figlin, J. Liu, R. Jove and H. Yu, S1PR1-STAT3 signaling is crucial for myeloid cell colonization at future metastatic sites, Cancer Cell 21 (2012) 642–654; http://doi.org/10.1016/j.ccr.2012.03.039

  • 20. X. Yuan, A. Ghosh, Q. Jie, G. He and Y. Wu, Effects of desloratadine citrate disodium injection on rat models of ovalbumin-induced allergic rhinitis: involvement of T-cell responses modulation, Int. Forum Allergy Rhinol. 5 (2015) 1170–1176; http://doi.org/10.1002/alr.21594

  • 21. J. Bousquet, R. Murray, D. Price, D. Somekh, L. Munter, J. Phillips and W. Czarlewski, The allergic allergist behaves like a patient, Ann. Allergy Asthma Immunol. 121 (2018) 741–742; http://doi.org/10.1016/j.anai.2018.07.034

  • 22. X. L. Fan, Q. X. Zeng, X. Li, C. L. Li, Z. B. Xu, X. Q. Deng, J. Shi, D. Chen, S. G. Zheng and Q. L. Fu, Induced pluripotent stem cell-derived mesenchymal stem cells activate quiescent T cells and elevate regulatory T cell response via NF-kappaB in allergic rhinitis patients, Stem Cell Res. Ther. 9 (2018) 170; http://doi.org/10.1186/s13287-018-0896-z

  • 23. T. Iinuma, Y. Okamoto, Y. Morimoto, T. Arai, T. Sakurai, S. Yonekura, D. Sakurai, K. Hirahara and T. Nakayama, Pathogenicity of memory Th2 cells is linked to stage of allergic rhinitis, Allergy 73 (2018) 479–489; http://doi.org/10.1111/all.13295

  • 24. F. Xu, S. Yu, M. Qin, Y. Mao, L. Jin, N. Che, S. Liu and R. Ge, Hydrogen-rich saline ameliorates allergic rhinitis by reversing the imbalance of Th1/Th2 and up-regulation of CD4+CD25+ Foxp3+regulatory T cells, interleukin-10, and membrane-bound transforming growth factor-beta in guinea pigs, Inflammation 41 (2018) 81–92; http://doi.org/10.1007/s10753-017-0666-6

  • 25. A. M. Watts, N. P. West, A. W. Cripps, P. K. Smith and A. J. Cox, Distinct gene expression patterns between nasal mucosal cells and blood collected from allergic rhinitis sufferers, Int. Arch. Allergy Immunol. 177 (2018) 29–34; http://doi.org/10.1159/000489609

  • 26. M. O. Avincsal, S. Ozbal, A. O. Ikiz, C. Pekcetin and E. A. Guneri, Effects of topical intranasal doxycycline treatment in the rat allergic rhinitis model, Clin. Exp. Otorhinolaryngol. 7 (2014) 106–111; http://doi.org/10.3342/ceo.2014.7.2.106

  • 27. X. Liu, H. Hu, H. Fan, D. Zuo, Z. Shou, Y. Liao, Z. Nan and Q. Tang, The role of STAT3 and AhR in the differentiation of CD4+ T cells into Th17 and Treg cells, Medicine (Baltimore) 96 (2017) e6615; http://doi.org/10.1097/MD.0000000000006615

  • 28. Y. Ma, X. Yuan, L. Deng, W. Xu, Y. Zheng, C. Yue, G. Zhang, F. Xie, Y. H. Yang, M. P. Gantier, J. Liu, D. Xu and L. Shen, Imbalanced frequencies of Th17 and Treg cells in acute coronary syndromes are mediated by IL-6-STAT3 signaling, PLoS One 8 (2013) e72804; http://doi.org/10.1371/journal.pone.0072804

OPEN ACCESS

Journal + Issues

Search