Antiproliferative evaluation of various aminoquinoline derivatives

Open access

Abstract

Four classes of aminoquinoline derivatives were prepared: primaquine ureas 1af, primaquine bis-ureas 2af, chloroquine fumardiamides 3af and mefloquine fumardiamides 4af. Their antiproliferative activities against breast adeno-carcinoma (MCF-7), lung carcinoma (H460) and colon carcinoma (HCT 116 and SW620) cell lines were evaluated in vitro, using MTT cell proliferation assay. The results revealed a low activity of primaquine urea and bis-urea derivatives and high activity of all fumardiamides, with IC50 values in low micromolar range against all tested cancer cell lines.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. T. I. Oprea and J. Mestres Drug repurposing: Far beyond new targets for old drugs AAPS J. 14 (2012) 759–763.

  • 2. T. T. Ashburn and K. B. Thor Drug repositioning: identifying and developing new uses for existing drugs Nat. Rev. Drug Discov. 3 (2004) 673–683; https://doi.org/10.1038/nrd1468

  • 3. V. R. Solomon and H. Lee Chloroquine and its analogs: A new promise of an old drug for effective and safe cancer therapies Eur. J. Pharmacol. 625 (2009) 220–233; https://doi.org/10.1016/j.ejphar.2009.06.063

  • 4. R. Duffy C. Wade and R. Chang Discovery of anticancer drugs from antimalarial natural products: a MEDLINE literature review Drug Discov. Today 17 (2012) 942–953.; https://doi.org/10.1016/j.drudis.2012.03.013

  • 5. T. Kimura Y. Takabatake A. Takahashi and Y. Isaka Chloroquine in cancer therapy: A double-edged sword of autophagy Cancer Res. 73 (2013) 3–7; https://doi.org/10.1158/0008-5472

  • 6. R. H. van Huijsduijnen R. Kiplin Guy K. Chibale R. K. Haynes I. Peitz G. Kelter M. A. Phillips J. L. Vennerstrom Y. Yuthavong and T. N. C. Wells Anticancer properties of distinct antimalarial drug classes PLoS One 8 (2013) e82962.

  • 7. A. K. Abdel-Aziz S. Shouman E. El-Demerdash M. Elgendy and A. B. Abdel-Naim Chloroquine as a promising adjuvant chemotherapy together with sunitinib Sci. Proc. 1 (2014) Article ID e384; https://doi.org/10.14800/sp.384

  • 8. F. Liu Y. Shang and S.-Z. Chen Chloroquine potentiates the anti-cancer effect of lidamycin on non-small cell lung cancer cells in vitroActa Pharmacol. Sin. 35 (2014) 645–652; https://doi.org/10.1038/aps.2014.3

  • 9. A. R. Choi J. H. Kim Y. H. Woo H. S. Kim and S. Yoon Anti-malarial drugs primaquine and chloroquine have different sensitization effects with anti-mitotic drugs in resistant cancer cells Anticancer Res. 36 (2016) 1641–1648.

  • 10. A. Ganguli D. Choudhury S. Datta S. Bhattacharya and G. Chakrabarti Inhibition of autophagy by chloroquine potentiates synergistically anti-cancer property of artemisinin by promoting ROS dependent apoptosis Biochimie 107 (2014) 338–349; https://doi.org/10.1016/j.biochi.2014.10.001

  • 11. C. Verbaanderd H. Maes M. B. Schaaf V. P. Sukhatme P. Pantziarka V. Sukhatme P. Agostinis and G. Bouche Repurposing drugs in oncology (ReDO) – chloroquine and hydroxychloroquine as anti-cancer agents eCancer 11 (2017) Article ID 781; https://doi.org/10.3332/ecancer.2017.781

  • 12. F. Wang J. Tang P. Li S. Si H. Yu X. Yang J. Tao Q. Lv M. Gu H. Yang and Z. Wang Chloroquine enhances the radiosensitivity of bladder cancer cells by inhibiting autophagy and activating apoptosis Cell. Physiol. Biochem. 45 (2018) 54–66; https://doi.org/10.1159/000486222

  • 13. L. Liu C. Han H. Yu W. Zhu H. Cui L. Zheng C. Zhang and L. Yue Chloroquine inhibits cell growth in human A549 lung cancer cells by blocking autophagy and inducing mitochondrial-mediated apoptosis Oncol. Rep. 39 (2018) 2807–2816.

  • 14. A. Kamal A. Aziz S. Shouman E. El-Demerdash M. Elgendy and A. B. Abdel-Naim Chloroquine synergizes sunitinib cytotoxicity via modulating autophagic apoptotic and angiogenic machineries Chem. Biol. Interact. 217 (2014) 28–40; https://doi.org/10.1016/j.cbi.2014.04.007

  • 15. G. W. Soo J. H. Law E. Kan S. Y. Tan W. Y. Lim G. Chay N. I. Bukhari and I. Segarra Differential effects of ketoconazole and primaquine on the pharmacokinetics and tissue distribution of imatinib in mice Anticancer Drugs 21 (2010) 695–703.

  • 16. Y. K. Wong C. Xu K. A. Kalesh Y. He Q. Lin W. S. F. Wong H. M. Shen and J. Wang Artemisinin as an anticancer drug: Recent advances in target profiling and mechanisms of action Med. Res. Rev. 37 (2017) 1492–1517.

  • 17. https://clinicaltrials.gov/ct2/home (last access May 26 2019)

  • 18. https://en.wikipedia.org/wiki/WHO_Model_List_of_Essential_Medicines (last access May 27 2019)

  • 19. N. Vale R. Moreira and P. Gomes Primaquine revisited six decades after its discovery Eur. J. Med. Chem. 44 (2009) 937–953; https://doi.org/10.1016/j.ejmech.2008.08.011

  • 20. P. M. Njaria J. Okombo N. M. Njuguna and K. Chibale Chloroquine-containing compounds: a patent review (2010 – 2014) Expert Opin. Therap. Patents 25 (2015) 1003–1024; https://doi.org/10.1517/13543776.2015.1050791

  • 21. S-J. Yeo D-X. Liu H-S. Kim and H. Park Anti-malarial effect of novel chloroquine derivatives as agents for the treatment of malaria Malaria J. 16 (2017) 80; https://doi.org/10.1186/s12936-017-1725-z

  • 22. M. A. Avery D. J. Weldon and K. M. Muraleedharan Advances in the Discovery of New Antimalarials in Comprehensive Medicinal Chemistry II (Eds. J. B. Taylor and D. J. Triggle) Vol. 7 Elsevier Ltd. 2007 pp. 765–814; https://doi.org/10.1016/B0-08-045044-X/00227-3

  • 23. K. Pavić Z. Rajić Z. Mlinarić L. Uzelac M. Kralj and B. Zorc Chloroquine urea derivatives: synthesis and antitumor activity in vitroActa Pharm. 68 (2018) 471–483.

  • 24. M. Beus L. Persoons D. Schols L. Uzelac M. Kralj Z. Rajić and B. Zorc Cytotoxicity studies of primaquine and chloroquine fumardiamides 6th Croatian Congress on Pharmacy with International Participation Book of Abstract PO-16 Dubrovnik April 4–6 2019

  • 25. M. Beus D. Fontinha J. Held Z. Rajić M. Prudêncio and B. Zorc Synthesis and antiplasmodial evaluation of novel mefloquine-based fumardiamides Acta Pharm. 69 (2019) 233–248; https://doi.org/10.2478/acph-2019-0019

  • 26. G. Džimbeg B. Zorc M. Kralj K. Ester K. Pavelić J. Balzarini E. De Clercq and M. Mintas The novel primaquine derivatives of N-alkyl cycloalkyl or aryl urea: synthesis cytostatic and antiviral activity evaluations Eur. J. Med. Chem. 43 (2008) 1180–1187; https://doi.org/10.1016/j.ejmech.2007.09.001

  • 27. M. Šimunović I. Perković B. Zorc K. Ester M. Kralj D. Hadjipavlou-Litina and E. Pontiki Urea and carbamate derivatives of primaquine: synthesis cytostatic and antioxidant activities Bioorg. Med. Chem. 17 (2009) 5605–5613; https://doi.org/10.1016/j.bmc.2009.06.030

  • 28. I. Perković S. Tršinar J. Žanetić M. Kralj I. Martin-Kleiner J. Balzarini D. Hadjipavlou-Litina and A. M. Katsori Novel 1-acyl-4-substituted semicarbazide derivatives of primaquine – synthesis cytostatic antiviral and antioxidative studies J. Enzyme Inhib. Med. Chem. 28 (2013) 601–610; https://doi.org/10.3109/14756366.2012.663366

  • 29. K. Pavić I. Perković M. Cindrić M. Pranjić I. Martin-Kleiner M. Kralj D. Schols D. Hadjipavlou-Litina A.-M. Katsori and B. Zorc Novel semicarbazides and ureas of primaquine with bulky aryl or hydroxyalkyl substituents: Synthesis cytostatic and antioxidative activity Eur. J. Med. Chem. 86 (2014) 502–514; https://doi.org/10.1016/j.ejmech.2014.09.013

  • 30. I. Perković M. Antunović I. Marijanović K. Pavić K. Ester M. Kralj J. Vlainić I. Kosalec D. Schols D. Hadjipavlou-Litina E. Pontiki and B. Zorc Novel urea and bis-urea primaquine derivatives with hydroxyphenyl and halogenphenyl substituents: synthesis and biological evaluation Eur. J. Med. Chem. 124 (2016) 622–636; https://doi.org/10.1016/j.ejmech.2016.08.021

  • 31. K. Pavić I. Perković P. Gilja F. Kozlina K. Ester M. Kralj D. Schols D. Hadjipavlou-Litina E. Pontiki and B. Zorc Design synthesis and biological evaluation of novel primaquine-cinnamic acid conjugates of amide and acylsemicarbazide type Molecules 21 (2016) 1629–1653; https://doi.org/10.3390/molecules21121629

  • 32. K. Pavić I. Perković Š. Pospíšilová M. Machado D. Fontinha M. Prudêncio J. Jampilek A. Coffey L. Endersen H. Rimac and B. Zorc Primaquine hybrids as promising antimycobacterial and antimalarial agents Eur. J. Med. Chem. 143 (2018) 769–779; https://doi.org/10.1016/j.ejmech.2017.11.083

  • 33. J. Vlainić I. Kosalec K. Pavić D. Hadjipavlou-Litina E. Pontiki and B. Zorc Insights into biological activity of ureidoamides with primaquine and amino acid moieties J. Enzyme Inhib. Med. Chem. 33 (2018) 376–382; https://doi.org/10.1080/14756366.2017.1423067

  • 34. J. Levatić K. Pavić I. Perković L. Uzelac K. Ester M. Kralj M. Kaiser M. Rottmann F. Supek and B. Zorc Machine learning prioritizes synthesis of primaquine ureidoamides with high antimalarial activity and attenuated cytotoxicity Eur. J. Med. Chem. 146 (2018) 651–667; https://doi.org/10.1016/j.ejmech.2018.01.062

  • 35. M. Beus Z. Rajić D. Maysinger Z. Mlinarić M. Antunović I. Marijanović D. Fontinha M. Prudêncio J. Held S. Olgen and B. Zorc SAHAquines novel hybrids based on SAHA and primaquine motifs as potential anticancer and antiplasmodial agents ChemistryOpen 7 (2018) 624–638; https://doi.org/10.1002/open.201800117

  • 36. Z. Rajić M. Beus H. Michnova J. Vlainić L. Persoons I. Kosalec J. Jampilek D. Schols T. Keser and B. Zorc Asymmetric primaquine and halogenaniline fumardiamides as novel biologically active Michael acceptors Molecules 23 (2018) 1724; https://doi.org/10.3390/molecules23071724

  • 37. I. Zhang M. Beus U. Stochaj P. U. Le B. Zorc Z. Rajić K. Petrecca and D. Maysinger Inhibition of glioblastoma cell proliferation invasion and mechanism of action of a novel hydroxamic acid hybrid molecule Cell Death Discov. 5 (2019) 41; https://doi.org/10.1038/s41420-018-0103-0

  • 38. K. Pavić Z. Rajić H. Michnová J. Jampílek I. Perković and B. Zorc Second generation of primaquine ureas and bis-ureas as potential antimycobacterial agents Mol. Diver. (2018); https://doi.org/10.1007/s11030-018-9899-z

  • 39. M. E. Flanagan J. A. Abramite D. P. Anderson A. Aulabaugh U. P. Dahal A. M. Gilbert C. Li J. Montgomery S. R. Oppenheimer T. Ryder B. P. Schuff D. P. Uccello G. S. Walker Y. Wu M. F. Brown J. M. Chen M. M. Hayward M. C. Noe R. S. Obach L. Philippe V. Shanmugasundaram M. J. Shapiro J. Starr J. Stroh and Y. Che Chemical and computational methods for the characterization of covalent reactive groups for the prospective design of irreversible inhibitors J. Med. Chem. 57 (2014) 10072–10079; https://doi.org/10.1021/jm501412a

  • 40. I. Fernandes N. Vale V. de Freitas R. Moreira N. Mateus and P. Gomes Anti-tumoral activity of imidazoquines a new class of antimalarials derived from primaquine Bioorg. Med. Chem. Lett. 19 (2009) 6914–6917; https://doi.org/10.1016/j.bmcl.2009.10.081

  • 41. T. Rossi A. Coppi E. Bruni A. Ruberto S. Santachiara and G. A. Baggio Effects of anti-malarial drugs on MCF-7 and Vero cell replication Anticancer Res. 27 (2007) 2555–2559.

  • 42. A. R. Martirosyan R. Rahim-Bata A. B. Freeman C. D. Clarke R. L. Howard and J. S. Strobl Differentiation-inducing quinolines as experimental breast cancer agents in the MCF-7 human breast cancer cell model Biochem. Pharmacol. 68 (2004) 1729–1738.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 1.405
5-year IMPACT FACTOR: 1.701

CiteScore 2018: 1.47

SCImago Journal Rank (SJR) 2018: 0.314
Source Normalized Impact per Paper (SNIP) 2018: 0.637

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 126 126 42
PDF Downloads 60 60 33