Cancer presents one of the leading causes of death in the world. Current treatment includes the administration of one or more anticancer drugs, commonly known as chemotherapy. The biggest issue concerning the chemotherapeutics is their toxicity on normal cells and persisting side effects. One approach to the issue is chemoprevention and the other one is the discovery of more effective drugs or drug combinations, including combinations with polyphenols. Olive oil polyphenols (OOPs), especially hydroxytyrosol (HTyr), tyrosol (Tyr) and their derivatives oleuropein (Ole), oleacein and oleocanthal (Oc) express anticancer activity on different cancer models. Recent studies report that phenolic extract of virgin olive oil may be more effective than the individual phenolic compounds. Also, there is a growing body of evidence about the combined treatment of OOPs with various anticancer drugs, such as cisplatin, tamoxifen, doxorubicin and others. These novel approaches may present an advanced strategy in the prevention and treatment of cancer.
1. WHO Cancer WHO.; Accessed May 21 2019 from http://www.who.int/cancer/en/
2. What Is Cancer? National Cancer Institute; Accessed May 21 2019 from https://www.cancer.gov/about-cancer/understanding/what-is-cancer
3. N. A. Lobo Y. Shimono D. Qian and M. F. Clarke The biology of cancer stem cells Annu. Rev. Cell Dev. Biol. 23 (2007) 675–699; https://doi.org/10.1146/annurev.cellbio.22.010305.104154
4. F. Bray J. Ferlay I. Soerjomataram R. L. Siegel L. A. Torre and A. Jemal Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries CA-Cancer J. Clin. 68 (2018) 394–424; https://doi.org/10.3322/caac.21492
5. T. Nabekura Overcoming multidrug resistance in human cancer cells by natural compounds Toxins 2 (2010) 1207–1224; https://doi.org/10.3390/toxins2061207
6. M. Fantini M. Benvenuto L. Masuelli G. Frajese I. Tresoldi A. Modesti and R. Bei In vitro and in vivo antitumoral effects of combinations of polyphenols or polyphenols and anticancer drugs: perspectives on cancer treatment Int. J. Mol. Sci. 16 (2015) 9236–9282; https://doi.org/10.3390/ijms16059236
7. The 10 most common chemotherapy side effects Medical News Today.; Accessed May 21 2019 from https://www.medicalnewstoday.com/articles/323485.php
8. U. Lewandowska S. Gorlach K. Owczarek E. Hrabec and K. Szewczyk Synergistic interactions between anticancer chemotherapeutics and phenolic compounds and anticancer synergy between polyphenols Postepy. Hig. Med. Dosw. (Online) 68 (2014) 528–540.
9. C. Manach G. Williamson C. Morand A. Scalbert and C. Rémésy Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies Am. J. Clin. Nutr. 81 (2005) 230S–242S; https://doi.org/10.1093/ajcn/81.1.230S
10. G. Williamson and C. Manach Bioavailability and bioefficacy of polyphenols in humans. II. Review of 93 intervention studies Am. J. Clin. Nutr. 81 (2005) 243S–255S; https://doi.org/10.1093/ajcn/81.1.243S
11. H.-H. S. Chow and I. A. Hakim Pharmacokinetic and chemoprevention studies on tea in humans Pharmacol. Res. (2011) S1043661811001435; https://doi.org/10.1016/j.phrs.2011.05.007
12. A. Rodriguez-Mateos D. Vauzour C. G. Krueger D. Shanmuganayagam J. Reed L. Calani P. Mena D. Del Rio and A. Crozier Bioavailability bioactivity and impact on health of dietary flavonoids and related compounds: an update Arch. Toxicol. 88 (2014) 1803–1853; https://doi.org/10.1007/s00204-014-1330-7
13. T. M. de Kok S. G. van Breda and M. M. Manson Mechanisms of combined action of different chemopreventive dietary compounds: A review Eur. J. Nutr. 47 (2008) 51–59; https://doi.org/10.1007/s00394-008-2006-y
14. H. Wagner Synergy research: Approaching a new generation of phytopharmaceuticals Fitoterapia 82 (2011) 34–37; https://doi.org/10.1016/j.fitote.2010.11.016
15. K. Nurgali R. T. Jagoe and R. Abalo Editorial: Adverse effects of cancer chemotherapy: Anything new to improve tolerance and reduce sequelae? Front. Pharmacol. 9 (2018) 245; https://doi.org/10.3389/fphar.2018.00245
16. D. Shukla R. Rawal and N. Jain A brief review on plant-derived natural compounds as an anti-cancer agents Int. J. Herbal Med. 6 (2018) 28–36.
17. A. K. Garg T. A. Buchholz and B. B. Aggarwal Chemosensitization and radiosensitization of tumors by plant polyphenols Antioxid. Redox Signal. 7 (2005) 1630–1647; https://doi.org/10.1089/ars.2005.7.1630
18. H. Yang K. Landis-Piwowar D. Chen V. Milacic and Q. Dou Natural compounds with proteasome inhibitory activity for cancer prevention and treatment Curr. Protein Pept. Sci. 9 (2008) 227–239; https://doi.org/10.2174/138920308784533998
19. L. G. Korkina C. De Luca V. A. Kostyuk and S. Pastore Plant polyphenols and tumors: from mechanisms to therapies prevention and protection against toxicity of anti-cancer treatments Curr. Med. Chem. 16 (2009) 3943–3965; https://doi.org/10.2174/092986709789352312
20. J. Węsierska-Gądek M. P. Kramer and M. Maurer Resveratrol modulates roscovitine-mediated cell cycle arrest of human MCF-7 breast cancer cells Food Chem. Toxicol. 46 (2008) 1327–1333; https://doi.org/10.1016/j.fct.2007.09.004
21. W. Zhou X. Feng Han Han S. Guo and G. Wang Synergistic effects of combined treatment with histone deacetylase inhibitor suberoylanilide hydroxamic acid and TRAIL on human breast cancer cells Sci. Rep. 6 (2016); https://doi.org/10.1038/srep28004
22. C.-G. Wang W.-N. Yao B. Zhang J. Hua D. Liang and H.-S. Wang Lung cancer and matrix metal-loproteinases inhibitors of polyphenols from Selaginella tamariscina with suppression activity of migration Bioorg. Med. Chem. Lett. 28 (2018) 2413–2417; https://doi.org/10.1016/j.bmcl.2018.06.024
23. R. Fabiani Anti-cancer properties of olive oil secoiridoid phenols: a systematic review of in vivo studies Food Funct. 7 (2016) 4145–4159; https://doi.org/10.1039/C6FO00958A
24. L. Parkinson and S. Cicerale The health benefiting mechanisms of virgin olive oil phenolic compounds Molecules 21 (2016) 1734; https://doi.org/10.3390/molecules21121734
25. M. Gorzynik-Debicka P. Przychodzen F. Cappello A. Kuban-Jankowska A. Marino Gammazza N. Knap M. Wozniak and M. Gorska-Ponikowska Potential health benefits of olive oil and plant polyphenols Int. J. Mol. Sci. 19 (2018) 547; https://doi.org/10.3390/ijms19030686
26. M. Celano V. Maggisano S. M. Lepore D. Russo and S. Bulotta Secoiridoids of olive and derivatives as potential coadjuvant drugs in cancer: A critical analysis of experimental studies Pharmacol. Res. 142 (2019) 77–86; https://doi.org/10.1016/j.phrs.2019.01.045
27. J. Delgado-Lista P. Perez-Martinez J. F. Alcala-Diaz A. I. Perez-Caballero F. Gomez-Delgado F. Fuentes G. Quintana-Navarro F. Lopez-Segura A. M. Ortiz-Morales N. Delgado-Casado E. M. Yubero-Serrano A. Camargo C. Marin F. Rodriguez-Cantalejo P. Gomez-Luna J. M. Ordovas J. Lopez-Miranda and F. Perez-Jimenez CORonary Diet Intervention with Olive oil and cardiovascular PREVention study (the CORDIOPREV study): Rationale methods and baseline characteristics: A clinical trial comparing the efficacy of a Mediterranean diet rich in olive oil versus a low-fat diet on cardiovascular disease in coronary patients Am. Heart J. 177 (2016) 42–50; https://doi.org/10.1016/j.ahj.2016.04.011
28. S. Garcia-Calzon M. A. Martinez-Gonzalez C. Razquin F. Aros J. Lapetra J. Alfredo Martinez G. Zalba and A. Marti Mediterranean diet and telomere length in high cardiovascular risk subjects from the PREDIMED-NAVARRA study Clin. Nutr. 35 (2016) 1399–1405; https://doi.org/10.1016/j.clnu.2016.03.013
29. A. Medina-Remon R. Casas A. Tressserra-Rimbau E. Ros M. A. Martinez-Gonzalez M. Fito D. Corella J. Salas-Salvado R. M. Lamuela-Raventos and R. Estruch Polyphenol intake from a Mediterranean diet decreases inflammatory biomarkers related to atherosclerosis: a substudy of the PREDIMED trial. Br. J. Clin. Pharmacol. 83 (2017) 114–128; https://doi.org/10.1111/bcp.12986
30. Commission Regulation (EU) No 432/2012 of 16 May 2012 establishing a list of permitted health claims made on foods other than those referring to the reduction of disease risk and to children’s development and health Text with EEA relevance (n.d.) 40.
31. J. A. Menendez A. Vazquez-Martin R. Colomer J. Brunet A. Carrasco-Pancorbo R. Garcia-Villalba A. Fernandez-Gutierrez and A. Segura-Carretero Olive oil’s bitter principle reverses acquired autoresistance to trastuzumab (HerceptinTM) in HER2-overexpressing breast cancer cells BMC Cancer 7 (2007); https://doi.org/10.1186/1471-2407-7-80
32. J. Ferlay I. Soerjomataram R. Dikshit S. Eser C. Mathers M. Rebelo D. M. Parkin D. Forman and F. Bray Cancer incidence and mortality worldwide: Sources methods and major patterns in GLOBOCAN 2012: Globocan 2012 Int. J. Cancer 136 (2015) E359–E386; https://doi.org/10.1002/ijc.29210
33. A. Ahmad Farooqi S. Fayyaz A. Silva A. Sureda S. Nabavi A. Mocan S. Nabavi and A. Bishayee Oleuropein and cancer chemoprevention: The link is hot Molecules 22 (2017) 705; https://doi.org/10.3390/molecules22050705
34. M. A. Khanfar S. K. Bardaweel M. R. Akl and K. A. El Sayed Olive oil-derived oleocanthal as potent inhibitor of mammalian target of rapamycin: Biological evaluation and molecular modeling studies: oleocanthal is a potent mTOR inhibitor Phytother. Res. 29 (2015) 1776–1782; https://doi.org/10.1002/ptr.5434
35. J. Calahorra E. Martínez-Lara C. De Dios and E. Siles Hypoxia modulates the antioxidant effect of hydroxytyrosol in MCF-7 breast cancer cells PLOS ONE 13 (2018) e0203892; https://doi.org/10.1371/journal.pone.0203892
36. Y. Z. H.-Y. Hashim J. Worthington P. Allsopp N. G. Ternan E. M. Brown M. J. McCann I. R. Rowland S. Esposto M. Servili and C. I. R. Gill Virgin olive oil phenolics extract inhibit invasion of HT115 human colon cancer cells in vitro and in vivo Food Funct. 5 (2014) 1513–1519; https://doi.org/10.1039/c4fo00090k
37. H. Zubair A. Bhardwaj A. Ahmad S. K. Srivastava M. A. Khan G. K. Patel S. Singh and A. P. Singh Hydroxytyrosol induces apoptosis and cell cycle arrest and suppresses multiple oncogenic signaling pathways in prostate cancer cells Nutrit. Cancer 69 (2017) 932–942; https://doi.org/10.1080/01635581.2017.1339818
38. H. Song D. Y. Lim J. I. Jung H. J. Cho S. Y. Park G. T. Kwon Y.-H. Kang K. W. Lee M.-S. Choi and J. H. Y. Park Dietary oleuropein inhibits tumor angiogenesis and lymphangiogenesis in the B16F10 melanoma allograft model: a mechanism for the suppression of high-fat diet-induced solid tumor growth and lymph node metastasis Oncotarget 8 (2017) 32027–32042; https://doi.org/10.18632/oncotarget.16757
39. R. Fabiani P. Rosignoli A. D. Bartolomeo R. Fuccelli M. Servili G. F. Montedoro and G. Morozzi Oxidative DNA damage is prevented by extracts of olive oil hydroxytyrosol and other olive phenolic compounds in human blood mononuclear cells and HL60 cells J. Nutr. 138 (2008) 1411–1416. https://doi.org/10.1093/jn/138.8.1411
40. I. Potočnjak M. Škoda E. Pernjak-Pugel M. P. Peršić and R. Domitrović Oral administration of oleuropein attenuates cisplatin-induced acute renal injury in mice through inhibition of ERK signaling Mol. Nutr. Food Res. 60 (2016) 530–541; https://doi.org/10.1002/mnfr.201500409
41. I. O. Sherif and M. M. H. Al-Gayyar Oleuropein potentiates anti-tumor activity of cisplatin against HepG2 through affecting proNGF/NGF balance Life Sci. 198 (2018) 87–93; https://doi.org/10.1016/j.lfs.2018.02.027
42. I. O. Sherif The effect of natural antioxidants in cyclophosphamide-induced hepatotoxicity: Role of Nrf2/HO-1 pathway Int. Immunopharmacol. 61 (2018) 29–36; https://doi.org/10.1016/j.intimp.2018.05.007
43. J. Ruzzolini S. Peppicelli E. Andreucci F. Bianchini A. Scardigli A. Romani G. la Marca C. Nediani and L. Calorini Oleuropein the main polyphenol of Olea europaea leaf extract has an anti-cancer effect on human BRAF melanoma cells and potentiates the cytotoxicity of current chemotherapies Nutrients 10 (2018) 1950; https://doi.org/10.3390/nu10121950
44. N. El-azem M. Pulido-Moran C. L. Ramirez-Tortosa J. L. Quiles F. E. Cara P. Sanchez-Rovira S. Granados-Principal and Mc. Ramirez-Tortosa Modulation by hydroxytyrosol of oxidative stress and antitumor activities of paclitaxel in breast cancer Eur. J. Nutr. 58 (2019) 1203–1211; https://doi.org/10.1007/s00394-018-1638-9
45. A. Coccia L. Mosca R. Puca G. Mangino A. Rossi and E. Lendaro Extra-virgin olive oil phenols block cell cycle progression and modulate chemotherapeutic toxicity in bladder cancer cells Oncol. Rep. 36 (2016) 3095–3104; https://doi.org/10.3892/or.2016.5150
46. M. H. Elamin A. B. Elmahi M. H. Daghestani E. M. Al-Olayan R. A. Al-Ajmi A. F. Alkhuriji S. S. Hamed and M. F. Elkhadragy Synergistic anti-breast-cancer effects of combined treatment with oleuropein and doxorubicin in vivoAltern. Ther. Health Med. 25 (2019) 17–24.
47. E. Terzuoli G. Nannelli M. Frosini A. Giachetti M. Ziche and S. Donnini Inhibition of cell cycle progression by the hydroxytyrosol–cetuximab combination yields enhanced chemotherapeutic efficacy in colon cancer cells Oncotarget 8 (2017) 83207–83224; https://doi.org/10.18632/oncotarget.20544
48. N. M. Ayoub A. B. Siddique H. Y. Ebrahim M. M. Mohyeldin and K. A. El Sayed The olive oil phenolic (-)-oleocanthal modulates estrogen receptor expression in luminal breast cancer in vitro and in vivo and synergizes with tamoxifen treatment Europ. J. Pharmacol. 810 (2017) 100–111; https://doi.org/10.1016/j.ejphar.2017.06.019
49. A. B. Siddique H. Y. Ebrahim M. R. Akl N. M. Ayoub A. A. Goda M. M. Mohyeldin S. K. Nagumalli W. M. Hananeh Y.-Y. Liu S. A. Meyer and K. A. El Sayed (-)-Oleocanthal combined with lapatinib treatment synergized against HER-2 positive breast cancer in vitro and in vivoNutrients 11 (2019) 412; https://doi.org/10.3390/nu11020412
50. R. Ghanbari F. Anwar K. M. Alkharfy A.-H. Gilani and N. Saari Valuable nutrients and functional bioactives in different parts of olive (Olea europaea L.) – A review Int. J. Mol. Sci. 13 (2012) 3291–3340; https://doi.org/10.3390/ijms13033291
51. D. Boskou Olive Oil: Chemistry and Technology 2nd ed. AOCS Publishing. Champaign 2006; https://doi.org/10.1201/9781439832028
52. S. Cicerale X. A. Conlan A. J. Sinclair and R. S. J. Keast Chemistry and health of olive oil phenolics Crit. Rev. Food Sci. Nutr. 49 (2008) 218–236; https://doi.org/10.1080/10408390701856223
53. A. Bendini L. Cerretani A. Carrasco-Pancorbo A. M. Gómez-Caravaca A. Segura-Carretero A. Fernández-Gutiérrez and G. Lercker Phenolic molecules in virgin olive oils: A survey of their sensory properties health effects antioxidant activity and analytical methods. An overview of the last decade Molecules 12 (2007) 1679-1719.
54. C. Jakobušić Brala M. Barbarić A. Karković Marković S. Uršić Biomedicinal Aspects and Activities of Olive Oil Phenolic Compounds in Handbook of Olive Oil: Phenolic Compounds Production and Health Benefits (Ed. J. Miloš) Nova Science Publishers Inc. New York 2017 pp. 47–85. ISBN: 978-1-53612-357-9.
55. S. Rigacci and M. Stefani Nutraceutical properties of olive oil polyphenols. An itinerary from cultured cells through animal models to humans Int. J. Mol. Sci. 17 (2016) 843; https://doi.org/10.3390/ijms17060843
56. H. Shamshoum F. Vlavcheski and E. Tsiani Anticancer effects of oleuropein BioFactors 43 (2017) 517–528; https://doi.org/10.1002/biof.1366
57. M. Imran M. Nadeem S. A. Gilani S. Khan M. W. Sajid and R. M. Amir Antitumor perspectives of oleuropein and its metabolite hydroxytyrosol: Recent updates J. Food Sci. 83 (2018) 1781–1791; https://doi.org/10.1111/1750-3841.14198
58. A. M. Borzì A. Biondi F. Basile S. Luca E. S. D. Vicari and M. Vacante Olive oil effects on colorectal cancer Nutrients 11 (2019) 32; https://doi.org/10.3390/nu11010032
59. A. Di Francesco A. Falconi C. Di Germanio M. V. Micioni Di Bonaventura A. Costa S. Caramuta M. Del Carlo D. Compagnone E. Dainese C. Cifani M. Maccarrone and C. D’Addario Extravirgin olive oil up-regulates CB1 tumor suppressor gene in human colon cancer cells and in rat colon via epigenetic mechanisms J. Nutr. Biochem. 26 (2015) 250–258; https://doi.org/10.1016/j.jnutbio.2014.10.013
60. Z. K. Hassan M. H. Elamin M. H. Daghestani S. A. Omer E. M. Al-Olayan M. A. Elobeid P. Virk and O. B. Mohammed Oleuropein induces anti-metastatic effects in breast cancer Asian Pac. J. Cancer Prev. 13 (2012) 4555–4559; https://doi.org/10.7314/APJCP.2012.13.9.4555
61. C. I. R. Gill A. Boyd E. McDermott M. McCann M. Servili R. Selvaggini A. Taticchi S. Esposto G. Montedoro H. McGlynn and I. Rowland Potential anti-cancer effects of virgin olive oil phenolson colorectal carcinogenesis models in vitro Int. J. Cancer 117 (2005) 1–7; https://doi.org/10.1002/ijc.21083
62. S. Sánchez-Fidalgo I. Villegas A. Cárdeno E. Talero M. Sánchez-Hidalgo V. Motilva and C. Alarcón de la Lastra Extra-virgin olive oil-enriched diet modulates DSS-colitis-associated colon carcinogenesis in mice Clin. Nutr. 29 (2010) 663–673; https://doi.org/10.1016/j.clnu.2010.03.003
63. A. P. Femia P. Dolara M. Servili S. Esposto A. Taticchi S. Urbani A. Giannini M. Salvadori and G. Caderni No effects of olive oils with different phenolic content compared to corn oil on 12-dimethylhydrazine-induced colon carcinogenesis in rats Eur. J. Nutr. 47 (2008) 329–334; https://doi.org/10.1007/s00394-008-0731-x
64. B. Pampaloni C. Mavilia S. Fabbri A. Romani F. Ieri A. Tanini F. Tonelli and M. L. Brandi In vitro effects of extracts of extra virgin olive oil on human colon cancer cells Nutr. Cancer 66 (2014) 1228–1236; https://doi.org/10.1080/01635581.2014.951727
65. A. Coccia D. Bastianelli L. Mosca R. Monticolo I. Panuccio A. Carbone A. Calogero and E. Lendaro Extra virgin olive oil phenols suppress migration and invasion of T24 human bladder cancer cells through modulation of matrix metalloproteinase-2 Nutr. Cancer 66 (2014) 946–954; https://doi.org/10.1080/01635581.2014.922204
66. B. Polini M. Digiacomo S. Carpi S. Bertini F. Gado G. Saccomanni M. Macchia P. Nieri C. Manera and S. Fogli Oleocanthal and oleacein contribute to the in vitro therapeutic potential of extra virgin oil-derived extracts in non-melanoma skin cancer Toxicol. In Vitro 52 (2018) 243–250; https://doi.org/10.1016/j.tiv.2018.06.021
67. M.-C. López de las Hazas C. Piñol A. Macià and M.-J. Motilva Hydroxytyrosol and the colonic metabolites derived from virgin olive oil intake induce cell cycle arrest and apoptosis in colon cancer cells J. Agric. Food Chem. 65 (2017) 6467–6476; https://doi.org/10.1021/acs.jafc.6b04933
68. R. Fabiani M. V. Sepporta P. Rosignoli A. De Bartolomeo M. Crescimanno and G. Morozzi Anti-proliferative and pro-apoptotic activities of hydroxytyrosol on different tumour cells: the role of extracellular production of hydrogen peroxide Eur. J. Nutr. 51 (2012) 455–464; https://doi.org/10.1007/s00394-011-0230-3
69. L. Sun C. Luo and J. Liu Hydroxytyrosol induces apoptosis in human colon cancer cells through ROS generation Food Funct. 5 (2014) 1909–1914; https://doi.org/10.1039/C4FO00187G
70. P. Rosignoli R. Fuccelli M. V. Sepporta and R. Fabiani In vitro chemo-preventive activities of hydroxytyrosol: The main phenolic compound present in extra-virgin olive oil Food Funct. 7 (2016) 301–307; https://doi.org/10.1039/C5FO00932D
71. E. Terzuoli A. Giachetti M. Ziche and S. Donnini Hydroxytyrosol a product from olive oil reduces colon cancer growth by enhancing epidermal growth factor receptor degradation Mol. Nutr. Food Res. 60 (2016) 519–529; https://doi.org/10.1002/mnfr.201500498
72. B. Zhao Y. Ma Z. Xu J. Wang F. Wang D. Wang S. Pan Y. Wu H. Pan D. Xu L. Liu and H. Jiang Hydroxytyrosol a natural molecule from olive oil suppresses the growth of human hepatocellular carcinoma cells via inactivating AKT and nuclear factor-kappa B pathways Cancer Lett. 347 (2014) 79–87; https://doi.org/10.1016/j.canlet.2014.01.028
73. S. Li Z. Han Y. Ma R. Song T. Pei T. Zheng J. Wang D. Xu X. Fang H. Jiang and L. Liu Hydroxytyrosol inhibits cholangiocarcinoma tumor growth: An in vivo and in vitro study Oncol. Rep. 31 (2014) 145–152; https://doi.org/10.3892/or.2013.2853
74. R. Sirianni A. Chimento A. De Luca I. Casaburi P. Rizza A. Onofrio D. Iacopetta F. Puoci S. Andò M. Maggiolini and V. Pezzi Oleuropein and hydroxytyrosol inhibit MCF-7 breast cancer cell proliferation interfering with ERK1/2 activation Mol. Nutr. Food Res. 54 (2009) 833–840; https://doi.org/10.1002/mnfr.200900111
75. A. Chimento I. Casaburi C. Rosano P. Avena A. De Luca C. Campana E. Martire M. F. Santolla M. Maggiolini V. Pezzi and R. Sirianni Oleuropein and hydroxytyrosol activate GPER/GPR30-dependent pathways leading to apoptosis of ER-negative SKBR3 breast cancer cells Mol. Nutr. Food Res. 58 (2014) 478–489; https://doi.org/10.1002/mnfr.201300323
76. C. Goldsmith D. Bond H. Jankowski J. Weidenhofer C. Stathopoulos P. Roach and C. Scarlett The olive biophenols oleuropein and hydroxytyrosol selectively reduce proliferation influence the cell cycle and induce apoptosis in pancreatic cancer cells Int. J. Mol. Sci. 19 (2018) 1937; https://doi.org/10.3390/ijms19071937
77. G. Toteda S. Lupinacci D. Vizza R. Bonofiglio E. Perri M. Bonofiglio D. Lofaro A. La Russa F. Leone P. Gigliotti R. A. Cifarelli and A. Perri High doses of hydroxytyrosol induce apoptosis in papillary and follicular thyroid cancer cells J. Endocrinol. Invest. 40 (2017) 153–162; https://doi.org/10.1007/s40618-016-0537-2
78. M. Ramírez-Expósito and J. Martínez-Martos Anti-inflammatory and antitumor effects of hydroxytyrosol but not oleuropein on experimental glioma in vivo. A putative role for the reninangiotensin system Biomedicines 6 (2018) 11; https://doi.org/10.3390/biomedicines6010011
79. M. H. Elamin M. H. Daghestani S. A. Omer M. A. Elobeid P. Virk E. M. Al-Olayan Z. K. Hassan O. B. Mohammed and A. Aboussekhra Olive oil oleuropein has anti-breast cancer properties with higher efficiency on ER-negative cells Food Chem. Toxicol. 53 (2013) 310–316; https://doi.org/10.1016/j.fct.2012.12.009
80. L. Liu K. S. Ahn M. K. Shanmugam H. Wang H. Shen F. Arfuso A. Chinnathambi S. A. Alharbi Y. Chang G. Sethi and F. R. Tang Oleuropein induces apoptosis via abrogating NF-κB activation cascade in estrogen receptor-negative breast cancer cells J. Cell. Biochem. 120 (2019) 4504–4513; https://doi.org/10.1002/jcb.27738
81. M. V. Sepporta R. Fuccelli P. Rosignoli G. Ricci M. Servili G. Morozzi and R. Fabiani Oleuropein inhibits tumour growth and metastases dissemination in ovariectomised nude mice with MCF-7 human breast tumour xenografts J. Funct. Foods 8 (2014) 269–273; https://doi.org/10.1016/j.jff.2014.03.027
82. A. Cárdeno M. Sánchez-Hidalgo M. A. Rosillo and C. A. de la Lastra Oleuropein a Secoiridoid Derived from Olive Tree Inhibits the proliferation of human colorectal cancer cell through down-regulation of HIF-1α Nutr. Cancer 65 (2013) 147–156; https://doi.org/10.1080/01635581.2013.741758
83. C.-M. Yan E.-Q. Chai H.-Y. Cai G.-Y. Miao and W. Ma Oleuropein induces apoptosis via activation of caspases and suppression of phosphatidylinositol 3-kinase/protein kinase B pathway in HepG2 human hepatoma cell line Mol. Med. Rep. 11 (2015) 4617–4624; https://doi.org/10.3892/mmr.2015.3266
84. J. Yao J. Wu X. Yang J. Yang Y. Zhang and L. Du Oleuropein induced apoptosis in HeLa cells via a mitochondrial apoptotic cascade associated with activation of the c-Jun NH2-terminal kinase J. Pharmacol. Sci. 125 (2014) 300–311; https://doi.org/10.1254/jphs.14012FP
85. R. Acquaviva C. Di Giacomo V. Sorrenti F. Galvano R. Santangelo V. Cardile S. Gangia N. D’orazio N. G. Abraham and L. Vanella Antiproliferative effect of oleuropein in prostate cell lines Int. J. Oncol. 41 (2012) 31-38; https://doi.org/10.3892/ijo.2012.1428
86. M. Seçme C. Eroğlu Y. Dodurga and G. Bağcı Investigation of anticancer mechanism of oleuropein via cell cycle and apoptotic pathways in SH-SY5Y neuroblastoma cells Gene 585 (2016) 93–99; https://doi.org/10.1016/j.gene.2016.03.038
87. C. R. Capo J. Z. Pedersen M. Falconi and L. Rossi Oleuropein shows copper complexing properties and noxious effect on cultured SH-SY5Y neuroblastoma cells depending on cell copper content J. Trace Elem. Med. Biol. 44 (2017) 225–232; https://doi.org/10.1016/j.jtemb.2017.08.002
88. Y. Kimura and M. Sumiyoshi Olive leaf extract and its main component oleuropein prevent chronic ultraviolet B radiation-induced skin damage and carcinogenesis in hairless mice J. Nutr. 139 (2009) 2079–2086; https://doi.org/10.3945/jn.109.104992
89. S. Cao X. Zhu and L. Du P38 MAP kinase is involved in oleuropein-induced apoptosis in A549 cells by a mitochondrial apoptotic cascade Biomed. Pharmacother. 95 (2017) 1425–1435; https://doi.org/10.1016/j.biopha.2017.09.072
90. W. Wang J. Wu Q. Zhang X. Li X. Zhu Q. Wang S. Cao and L. Du Mitochondria-mediated apoptosis was induced by oleuropein in H1299 cells involving activation of p38 MAP kinase J. Cell. Biochem. 120 (2019) 5480–5494; https://doi.org/10.1002/jcb.27827
91. L. Parkinson and R. Keast Oleocanthal a phenolic derived from virgin olive oil: A review of the beneficial effects on inflammatory disease Int. J. Mol. Sci. 15 (2014) 12323–12334; https://doi.org/10.3390/ijms150712323
92. P. Khanal W.-K. Oh H. J. Yun G. M. Namgoong S.-G. Ahn S.-M. Kwon H.-K. Choi and H. S. Choi p-HPEA-EDA a phenolic compound of virgin olive oil activates AMP-activated protein kinase to inhibit carcinogenesis Carcinogenesis 32 (2011) 545–553; https://doi.org/10.1093/carcin/bgr001
93. M. R. Akl N. M. Ayoub M. M. Mohyeldin B. A. Busnena A. I. Foudah Y.-Y. Liu and K. A. E. Sayed Olive phenolics as c-Met inhibitors: (-)-Oleocanthal attenuates cell proliferation invasiveness and tumor growth in breast cancer models PLoS ONE 9 (2014) e97622; https://doi.org/10.1371/journal.pone.0097622
94. A. Elnagar P. Sylvester and K. El Sayed (−)-Oleocanthal as a c-Met inhibitor for the control of metastatic breast and prostate cancers Planta Med. 77 (2011) 1013–1019; https://doi.org/10.1055/s-0030-1270724
95. R. Diez-Bello I. Jardin J. J. Lopez M. El Haouari J. Ortega-Vidal J. Altarejos G. M. Salido S. Salido and J. A. Rosado (−)-Oleocanthal inhibits proliferation and migration by modulating Ca2+ entry through TRPC6 in breast cancer cells Biochim. Biophys. Acta BBA - Mol. Cell Res. 1866 (2019) 474–485; https://doi.org/10.1016/j.bbamcr.2018.10.010
96. S. Fogli C. Arena S. Carpi B. Polini S. Bertini M. Digiacomo F. Gado A. Saba G. Saccomanni M. C. Breschi P. Nieri C. Manera and M. Macchia Cytotoxic activity of oleocanthal isolated from virgin olive oil on human melanoma cells Nutr. Cancer 68 (2016) 873–877; https://doi.org/10.1080/01635581.2016.1180407
97. Y. Gu J. Wang and L. Peng (−)-Oleocanthal exerts anti-melanoma activities and inhibits STAT3 signaling pathway Oncol. Rep. 37 (2017) 483–491; https://doi.org/10.3892/or.2016.5270
98. T. Pei Q. Meng J. Han H. Sun L. Li R. Song B. Sun S. Pan D. Liang and L. Liu (-)-Oleocanthal inhibits growth and metastasis by blocking activation of STAT3 in human hepatocellular carcinoma Oncotarget 7 (2016) 43475–43491; https://doi.org/10.18632/oncotarget.9782
99. A. Cusimano D. Balasus A. Azzolina G. Augello M. R. Emma C. Di Sano R. Gramignoli S. C. Strom J. A. Mccubrey G. Montalto and M. Cervello Oleocanthal exerts antitumor effects on human liver and colon cancer cells through ROS generation Int. J. Oncol. 51 (2017) 533–544; https://doi.org/10.3892/ijo.2017.4049
100. M. Scotece R. Gómez J. Conde V. Lopez J. J. Gómez-Reino F. Lago A. B. Smith III and O. Gualillo Oleocanthal inhibits proliferation and MIP-1 expression in human multiple myeloma cells Curr. Med. Chem. 20 (2013) 2467–2475; https://doi.org/10.2174/0929867311320190006
101. J. M. Calderón-Montaño A. Madrona E. Burgos-Morón M. L. Orta S. Mateos J. L. Espartero and M. López-Lázaro Selective cytotoxic activity of new lipophilic hydroxytyrosol alkyl ether derivatives J. Agric. Food Chem. 61 (2013) 5046–5053; https://doi.org/10.1021/jf400796p
102. R. Bernini M. S. Gilardini Montani N. Merendino A. Romani and F. Velotti Hydroxytyrosol-derived compounds: A basis for the creation of new pharmacological agents for cancer prevention and therapy J. Med. Chem. 58 (2015) 9089-9107; https://doi.org/10.1021/acs.jmedchem.5b00669
103. R. Bernini I. Carastro G. Palmini A. Tanini R. Zonefrati P. Pinelli M. L. Brandi and A. Romani Lipophilization of hydroxytyrosol-enriched fractions from Olea europaea L. byproducts and evaluation of the in vitro effects on a model of colorectal cancer cells J. Agric. Food Chem. 65 (2017) 6506–6512; https://doi.org/10.1021/acs.jafc.6b05457
104. S. Bulotta R. Corradino M. Celano J. Maiuolo M. D’Agostino M. Oliverio A. Procopio S. Filetti and D. Russo Antioxidant and antigrowth action of peracetylated oleuropein in thyroid cancer cells J. Mol. Endocrinol. 51 (2013) 181–189; https://doi.org/10.1530/JME-12-0241
105. S. Bulotta R. Corradino M. Celano M. D’Agostino J. Maiuolo M. Oliverio A. Procopio M. Iannone D. Rotiroti and D. Russo Antiproliferative and antioxidant effects on breast cancer cells of oleuropein and its semisynthetic peracetylated derivatives Food Chem. 127 (2011) 1609–1614; https://doi.org/10.1016/j.foodchem.2011.02.025
106. B. A. Busnena A. I. Foudah T. Melancon and K. A. El Sayed Olive secoiridoids and semisynthetic bioisostere analogues for the control of metastatic breast cancer Bioorg. Med. Chem. 21 (2013) 2117–2127; https://doi.org/10.1016/j.bmc.2012.12.050
107. M. M. Mohyeldin M. R. Akl H. Y. Ebrahim A. M. Dragoi S. Dykes J. A. Cardelli and K. A. E. Sayed The oleocanthal-based homovanillyl sinapate as a novel c-Met inhibitor Oncotarget 7 (2016) 32247–32273; https://doi.org/10.18632/oncotarget.8681
108. B. Salehi P. Zucca M. Sharifi-Rad R. Pezzani S. Rajabi W. N. Setzer E. M. Varoni M. Iriti F. Kobarfard and J. Sharifi-Rad Phytotherapeutics in cancer invasion and metastasis Phytother. Res. 32 (2018) 1425–1449; https://doi.org/10.1002/ptr.6087
109. R. Fabiani M. V. Sepporta T. Mazza P. Rosignoli R. Fuccelli A. De Bartolomeo M. Crescimanno A. Taticchi S. Esposto M. Servili and G. Morozzi Influence of cultivar and concentration of selected phenolic constituents on the in vitro chemiopreventive potential of olive oil extracts J. Agric. Food Chem. 59 (2011) 8167–8174; https://doi.org/10.1021/jf201459u
110. T. Kubota S. W. Matsuzaki Y. Hoshiya M. Watanabe M. Kitajima F. Asanuma Y. Yamada J. Koh Antitumor activity of paclitaxel against human breast carcinoma xenografts serially transplanted into nude mice J. Surg. Oncol. 64 (1997) 115-121.
111. S. V. Singh D. Scalamogna H. Xia S. O’Toole D. Roy E. O. Emerson V. Gupta and H. A. Zaren Biochemical characterization of a mitomycin C-resistant human bladder cancer cell line Int. J. Cancer. 65 (1996) 852-857; https://doi.org/10.1002/(SICI)1097-0215(19960315)65:6<852::AID-IJC24>3.0.CO;2-4
112. L. Kelland The resurgence of platinum-based cancer chemotherapy Nat. Rev. Cancer 7 (2007) 573–584; https://doi.org/10.1038/nrc2167
113. S. Cerig F. Geyikoglu M. Bakir S. Colak M. Sonmez K. Koc Hepatoprotective effect of oleuropein against cisplatin-induced liver damage in rat Int. J. Med. Health Sci. 10 (2016) 264–271.
114. F. Geyikoglu H. Isikgoz H. Onalan S. Colak S. Cerig M. Bakir M. Hosseinigouzdagani K. Koc H. S. Erol Y. S. Saglam and S. Yildirim Impact of high-dose oleuropein on cisplatin-induced oxidative stress genotoxicity and pathological changes in rat stomach and lung J. Asian Nat. Prod. Res. 19 (2017) 1214–1231; https://doi.org/10.1080/10286020.2017.1317751
115. M. Bakir F. Geyikoglu K. Koc and S. Cerig Therapeutic effects of oleuropein on cisplatin-induced pancreas injury in rats J. Can. Res. Ther. 14 (2018) 671; https://doi.org/10.4103/jcrt.JCRT_1040_16
116. G. Ventura R. Abbattista C. D. Calvano C. De Ceglie I. Losito F. Palmisano and T. R. Cataldi Tandem mass spectrometry characterization of a conjugate between oleuropein and hydrated cisdiammineplatinum(II) Rapid Commun. Mass Spectrom. 33 (2019) 657–666; https://doi.org/10.1002/rcm.8394
117. P. Przychodzen R. Wyszkowska M. Gorzynik-Debicka T. Kostrzewa A. Kuban-Jankowska and M. Gorska-Ponikowska Anticancer potential of oleuropein the polyphenol of olive oil with 2-methoxyestradiol separately or in combination in human osteosarcoma cells Anticancer Res. 39 (2019) 1243–1251; https://doi.org/10.21873/anticanres.13234
118. U. Ernest H.-Y. Chen M.-J. Xu Y. D. Taghipour M. H. H. Bin Asad R. Rahimi and G. Murtaza Anti-cancerous potential of polyphenol-loaded polymeric nanotherapeutics Molecules 23 (2018) 2787; https://doi.org/10.3390/molecules23112787
119. A. K. Jain K. Thanki and S. Jain Co-encapsulation of tamoxifen and quercetin in polymeric nanoparticles: Implications on oral bioavailability antitumor efficacy and drug-induced toxicity Mol. Pharmaceutics 10 (2013) 3459–3474; https://doi.org/10.1021/mp400311j