Quantitative analysis and resolution of pharmaceuticals in the environment using multivariate curve resolution-alternating least squares (MCR-ALS)

Open access


The study presents the application of multivariate curve resolution alternating least squares (MCR-ALS) with a correlation constraint for simultaneous resolution and quantification of ketoprofen, naproxen, paracetamol and caffeine as target analytes and triclosan as an interfering component in different water samples using UV-Vis spectrophotometric data. A multivariate regression model using the partial least squares regression (PLSR) algorithm was developed and calculated. The MCR-ALS results were compared with the PLSR obtained results. Both models were validated on external sample sets and were applied to the analysis of real water samples. Both models showed comparable and satisfactory results with the relative error of prediction of real water samples in the range of 1.70–9.75 % and 1.64–9.43 % for MCR-ALS and PLSR, resp. The obtained results show the potential of MCR-ALS with correlation constraint to be applied for the determination of different pharmaceuticals in complex environmental matrices.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. S. D. Richardson and T. A. Ternes Water analysis: emerging contaminants and current issues Anal. Chem. 83 (2011) 4614–4648; https://doi.org/10.1021/ac200915r

  • 2. K. Kümmerer Pharmaceuticals in the Environment: Sources Fate Effects and Risks Springer Science & Business Media Heidelberg 2008 pp. 521.

  • 3. D. S. Aga Fate of Pharmaceuticals in the Environment and in Water Treatment Systems CRC Press Boca Raton (FL) 2007.

  • 4. J. Rivera-Utrilla M. Sánchez-Polo M. Á. Ferro-García G. Prados-Joya and R. Ocampo-Pérez Pharmaceuticals as emerging contaminants and their removal from water. A review Chemosphere93 (2013) 1268–1287; https://doi.org/10.1016/j.chemosphere.2013.07.059

  • 5. T. A. Ternes Occurrence of drugs in German sewage treatment plants and rivers 1 Water Res. 32 (1998) 3245–3260; https://doi.org/10.1016/S0043-1354(98)00099-2

  • 6. M. D. Celiz J. Tso and D. S. Aga Pharmaceutical metabolites in the environment: analytical challenges and ecological risks Environ. Toxicol. Chem. 28 (2009) 2473–2484; https://doi.org/10.1897/09-173.1

  • 7. H. Shaaban High speed hydrophilic interaction liquid chromatographic method for simultaneous determination of selected pharmaceuticals in wastewater using a cyano-bonded silica column J. Liq. Chromatogr. Relat. Technol. 41 (2018) 180–187; https://doi.org/10.1080/10826076.2018.1429282

  • 8. E. Gracia-Lor N. I. Rousis E. Zuccato R. Bade J. A. Baz-Lomba E. Castrignanò A. Causanilles F. Hernández B. Kasprzyk-Hordern and J. Kinyua Estimation of caffeine intake from analysis of caffeine metabolites in wastewater Sci. Total Environ. 609 (2017) 1582–1588; https://doi.org/10.1016/j.scitotenv.2017.07.258

  • 9. F. Tohidi and Z. Cai Fate and mass balance of triclosan and its degradation products: comparison of three different types of wastewater treatments and aerobic/anaerobic sludge digestion J. Hazard. Mater. 323 (2017) 329–340; https://doi.org/10.1016/j.jhazmat.2016.04.034

  • 10. H. Shaaban and T. Górecki High temperature-high efficiency liquid chromatography using sub-2 µm coupled columns for the analysis of selected non-steroidal anti-inflammatory drugs and veterinary antibiotics in environmental samples Anal. Chim. Acta 702 (2011) 136–143; https://doi.org/10.1016/j.aca.2011.06.040

  • 11. K. Kotnik T. Kosjek U. Krajnc and E. Heath Trace analysis of benzophenone-derived compounds in surface waters and sediments using solid-phase extraction and microwave-assisted extraction followed by gas chromatography-mass spectrometry Anal. Bioanal. Chem. 406 (2014) 3179–3190; https://doi.org/10.1007/s00216-014-7749-0

  • 12. A. El-Gindy S. Emara and A. Mostafa UV partial least-squares calibration and liquid chromatographic methods for direct quantitation of levofloxacin in urine J. AOAC Int. 90 (2007) 1258–1265; https://doi.org/10.1039/c0ay00662a

  • 13. R. Tauler Multivariate curve resolution applied to second order data Chemom. Intel. Lab. Syst. 30 (1995) 133–146; https://doi.org/10.1016/0169-7439(95)00047-X

  • 14. W. Chen X.-Y. Liu B.-C. Huang L.-F. Wang H.-Q. Yu and B. Mizaikoff Probing membrane fouling via infrared attenuated total reflection mapping coupled with multivariate curve resolution Chemphyschem 17 (2016) 358–363; https://doi.org/10.1002/cphc.201500932

  • 15. M. Navarro-Reig J. Jaumot A. Baglai G. Vivó-Truyols P. J. Schoenmakers and R. Tauler Untargeted comprehensive two-dimensional liquid chromatography coupled with high-resolution mass spectrometry analysis of rice metabolome using multivariate curve resolution Anal. Chem. 89 (2017) 7675–7683; https://doi.org/10.1021/acs.analchem.7b01648

  • 16. D. A. Forchetti and R. J. Poppi Use of NIR hyperspectral imaging and multivariate curve resolution (MCR) for detection and quantification of adulterants in milk powder LWT-Food Sci. Technol. 76 (2017) 337–343; https://doi.org/10.1016/j.lwt.2016.06.046

  • 17. F. Puig-Castellví I. Alfonso and R. Tauler Untargeted assignment and automatic integration of 1H NMR metabolomic datasets using a multivariate curve resolution approach Anal. Chim. Acta 964 (2017) 55–66; https://doi.org/10.1016/j.aca.2017.02.010

  • 18. J. B. Ghasemi M. K. Rofouei and N. Amiri Multivariate curve resolution alternating least squares in the quantitative determination of sulfur using overlapped S (Kα)–Mo (Lα) emission peaks by wavelength dispersive X-ray fluorescence spectrometry X-Ray Spectrom. 44 (2015) 75–80; https://doi.org/10.1021/acs.analchem.6b03116

  • 19. H. Parastar and H. Shaye Comparative study of partial least squares and multivariate curve resolution for simultaneous spectrophotometric determination of pharmaceuticals in environmental samples RSC Adv. 5 (2015) 70017–70024; https://doi.org/10.1039/C5RA10658C

  • 20. R. L. Pérez and G. M. Escandar Liquid chromatography with diode array detection and multivariate curve resolution for the selective and sensitive quantification of estrogens in natural waters Anal. Chim. Acta 835 (2014) 19–28; https://doi.org/10.1016/j.aca.2014.05.015

  • 21. C. Ruckebusch and L. Blanchet Multivariate curve resolution: a review of advanced and tailored applications and challenges Anal. Chim. Acta 765 (2013) 28–36; https://doi.org/10.1016/j.aca.2012.12.028

  • 22. M. Garrido F. Rius and M. Larrechi Multivariate curve resolution-alternating least squares (MCR-ALS) applied to spectroscopic data from monitoring chemical reactions processes Anal. Bioanal. Chem. 390 (2008) 2059–2066; https://doi.org/10.1007/s00216-008-1955-6

  • 23. J. Santos I. Aparicio E. Alonso and M. Callejón Simultaneous determination of pharmaceutically active compounds in wastewater samples by solid phase extraction and high-performance liquid chromatography with diode array and fluorescence detectors Anal. Chim. Acta 550 (2005) 116–122; https://doi.org/10.1016/j.aca.2005.06.064

  • 24. J. Jaumot A. de Juan and R. Tauler MCR-ALS GUI 2.0: New features and applications Chemom. Intel. Lab. Syst. 140 (2015) 1–12; https://doi.org/10.1016/j.chemolab.2014.10.003

  • 25. Multivariate Curve Resolution Homepage; http://www.mcrals.info; last access date Sept 4 2018

  • 26. USP 29 NF 24 USP Convention Rockville (MD) USA 2005; http://www.pharmacopeia.cn/usp.asp; last access date Sept 4 2018

  • 27. R. G. Brereton Multilevel multifactor designs for multivariate calibration Analyst 122 (1997) 1521–1529; https://doi.org/10.1039/a703654j

  • 28. T. Azzouz and R. Tauler Application of multivariate curve resolution alternating least squares (MCR-ALS) to the quantitative analysis of pharmaceutical and agricultural samples Talanta 74 (2008) 1201–1210; https://doi.org/10.1016/j.talanta.2007.08.024

  • 29. A. R. de Carvalho M. del Nogal Sánchez J. Wattoom and R. G. Brereton Comparison of PLS and kinetic models for a second-order reaction as monitored using ultraviolet visible and mid-infrared spectroscopy Talanta 68 (2006) 1190–1200; https://doi.org/10.1016/j.talanta.2005.07.053

  • 30. W. Windig and J. Guilment Interactive self-modeling mixture analysis Anal. Chem. 63 (1991) 1425–1432; https://doi.org/10.1021/ac00014a016

  • 31. R. Bro and S. De Jong A fast non-negativity-constrained least squares algorithm J. Chemom. 11 (1997) 393–401; https://doi.org/10.1002/(SICI)1099-128X(199709/10)11:53.0.CO;2-L

Journal information
Impact Factor

IMPACT FACTOR 2018: 1.405
5-year IMPACT FACTOR: 1.701

CiteScore 2018: 1.47

SCImago Journal Rank (SJR) 2018: 0.314
Source Normalized Impact per Paper (SNIP) 2018: 0.637

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 611 612 31
PDF Downloads 184 184 13