Core-shell nanofibers as drug delivery systems

Špela Zupančič 1
  • 1 Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia

Abstract

Core-shell nanofibers have grown in popularity over the last decade owing to their special features and their many applications in biomedicine. They can be produced by electrospinning of immiscible polymer blends or emulsions through a single nozzle or by electrospinning using a coaxial nozzle. Several of the electrospinning parameters allow great versatility for the compositions and diameters of core-shell nanofibers to be produced. Morphology of core-shell nanofibers can be investigated using transmission electron microscopy and, in some cases, scanning electron microscopy. Several studies have shown that core-shell nanofibers have some advantages over monolithic nanofibers, such as better drug, protein, gene or probiotic incorporation into the nanofibers, greater control over drug release, and maintenance of protein structure and activity during electrospinning. We herein review the production and characterization of core-shell nanofibers, the critical parameters that affect their development, and their advantages as delivery systems.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. J. Pelipenko, P. Kocbek and J. Kristl, Critical attributes of nanofibers: preparation, drug loading and tissue regeneration, Int. J. Pharm. 1–2 (2015) 57–74; https://doi.org/10.1016/j.ijpharm.2015.02.043

  • 2. N. Bhardwaj and S. C. Kundu, Electrospinning: a fascinating fiber fabrication technique, Biotechnol. Adv. 28 (2010) 325–347; https://doi.org/10.1016/j.biotechadv.2010.01.004

  • 3. Z. Sun, E. Zussman, A. L. Yarin, J. H. Wendorff and A. Greiner, Compound core–shell polymer nanofibers by co-electrospinning, Adv. Mater. 15 (2003) 1929–1932; https://doi.org/10.1002/adma.200305136

  • 4. X. Xu, X. Zhuang, X. Chen, X. Wang, L. Yang and X. Jing, Preparation of core-sheath composite nanofibers by emulsion electrospinning, Macromol. Rapid Commun. 27 (2006) 1637–1642; https://doi.org/10.1002/marc.200600384

  • 5. V. Beachley and X. Wen, Polymer nanofibrous structures: fabrication, biofunctionalization, and cell interactions, Prog. Polym. Sci. 35 (2010) 868–892; https://doi.org/10.1016/j.progpolymsci.2010.03.003

  • 6. B. Janković, J. Pelipenko, M. Škarabot, I. Muševič and J. Kristl, The design trend in tissue-engineering scaffolds based on nanomechanical properties of individual electrospun nanofibers, Int. J. Pharm. 455 (2013) 338–347; https://doi.org/10.1016/j.ijpharm.2013.06.083

  • 7. S. Sinha-Ray, S. Sinha-Ray, A. L. Yarin and B. Pourdeyhimi, Application of solution-blown 20–50-nm nanofibers in filtration of nanoparticles: the efficient van der Waals collectors, J. Membr. Sci. 485 (2015) 132–150; https://doi.org/10.1016/j.memsci.2015.02.026

  • 8. M. Ghaderi, M. Mousavi, H. Yousefi and M. Labbafi, All-cellulose nanocomposite film made from bagasse cellulose nanofibers for food packaging application, Carbohydr. Polym. 104 (2014) 59–65; https://doi.org/10.1016/j.carbpol.2014.01.013

  • 9. S. Chen, H. Hou, F. Harnisch, S. A. Patil, A. A. Carmona-Martinez, S. Agarwal, Y. Zhang, S. Sinha-Ray, A. L. Yarin, A. Greiner and U. Schöder, Electrospun and solution blown three-dimensional carbon fiber nonwovens for application as electrodes in microbial fuel cells, Energ. Environ. Sci. 4 (2011) 1417–1421; https://doi.org/10.1039/c0ee00446d

  • 10. H. Yoon and G. Kim, A three-dimensional polycaprolactone scaffold combined with a drug delivery system consisting of electrospun nanofibers, J. Pharm. Sci. 100 (2011) 424–430; https://doi.org/10.1002/jps.22310

  • 11. G. Cheng, X. Ma, J. Li, Y. Cheng, Y. Cao, Z. Wang, X. Shi, Y. Du, H. Deng and Z. Li, Incorporating platelet-rich plasma into coaxial electrospun nanofibers for bone tissue engineering, Int. J. Pharm. 547 (2018) 656–666; https://doi.org/10.1016/j.ijpharm.2018.06.020

  • 12. S. Chou, D. Carson and K. A. Woodrow, Current strategies for sustaining drug release from electrospun nanofibers, J. Control. Rel. 220, Part B (2015) 584–591; https://doi.org/10.1016/j.jconrel.2015.09.008

  • 13. D. H. Reneker and A. L. Yarin, Electrospinning jets and polymer nanofibers, Polymer49 (2008) 2387–2425; https://doi.org/10.1016/j.polymer.2008.02.002

  • 14. Š. Zupančič, S. Sinha-Ray, S. Sinha-Ray, J. Kristl and A. L. Yarin, Long-term sustained ciprofloxacin release from PMMA and hydrophilic polymer blended nanofibers, Mol. Pharm. 13 (2016) 295–305; https://pubs.acs.org/doi/abs/10.1021/acs.molpharmaceut.5b00804

  • 15. A. V. Bazilevsky, A. L. Yarin and C. M. Megaridis, Co-electrospinning of core−shell fibers using a single-nozzle technique, Langmuir23 (2007) 2311–2314; https://pubs.acs.org/doi/abs/10.1021/la063194q

  • 16. J. Pelipenko, J. Kristl, B. Janković, S. Baumgartner and P. Kocbek, The impact of relative humidity during electrospinning on the morphology and mechanical properties of nanofibers, Int. J. Pharm. 456 (2013) 125–134; https://doi.org/10.1016/j.ijpharm.2013.07.078

  • 17. R. Rošic, J. Pelipenko, J. Kristl, P. Kocbek, M. Bešter-Rogač and S. Baumgartner, Physical characteristics of poly(vinyl alcohol) solutions in relation to electrospun nanofiber formation, Eur. Polym. J. 49 (2013) 290–298; http://dx.doi.org/10.1016/j.eurpolymj.2012.11.013

  • 18. Š. Zupančič, S. Sinha-Ray, S. Sinha-Ray, J. Kristl and A. L. Yarin, Controlled release of ciprofloxacin from core-shell nanofibers with monolithic or blended core, Mol. Pharm. 13 (2016) 1393–1404; https://pubs.acs.org/doi/10.1021/acs.molpharmaceut.6b00039

  • 19. M. Misra, J. K. Pandey and A. K. Mohanty, Biocomposites, Woodhead Publishing, 2015, pp. 201–235.

  • 20. M. Wei, B. Kang, C. Sung and J. Mead, Core-sheath structure in electrospun nanofibers from polymer blends, Macromol. Mater. Engin. 291 (2006) 1307–1314; https://doi.org/10.1002/mame.200600284

  • 21. X. H. Li, C. L. Shao and Y. C. Liu, A Simple method for controllable preparation of polymer nanotubes via single capillary electrospinning, Langmuir23 (2007) 10920–10923; https://pubs.acs.org/doi/abs/10.1021/la701806f

  • 22. H. Qi, P. Hu, J. Xu and A. Wang, Encapsulation of drug reservoirs in fibers by emulsion electrospinning: morphology characterization and preliminary release assessment, Biomacromolecules7 (2006) 2327–2330; https://pubs.acs.org/doi/abs/10.1021/bm060264z

  • 23. A. M. Moydeen, M. S. Ali Padusha, E. F. Aboelfetoh, S. S. Al-Deyab and M. H. El-Newehy, Fabrication of electrospun poly(vinyl alcohol)/dextran nanofibers via emulsion process as drug delivery system: kinetics and in vitro release study, Int. J. Biol. Macromol. 116 (2018) 1250–1259; https://doi.org/10.1016/j.ijbiomac.2018.05.130

  • 24. C. Liu, C. Wang, Q. Zhao, X. Li, F. Xu, X. Yao and M. Wang, Incorporation and release of dual growth factors for nerve tissue engineering using nanofibrous bicomponent scaffolds, Biomed. Mater. 13 (2018) 044107; https://doi.org/10.1088/1748-605X/aab693

  • 25. L. Tian, M. P. Prabhakaran, X. Ding, D. Kai and S. Ramakrishna, Emulsion electrospun vascular endothelial growth factor encapsulated poly(l-lactic acid-co-ε-caprolactone) nanofibers for sustained release in cardiac tissue engineering, J. Mater. Sci. 47 (2012) 3272–3281; https://doi.org/10.1007/s10853-011-6166-4

  • 26. L. Tian, M. P. Prabhakaran, X. Ding, D. Kai and S. Ramakrishna, Emulsion electrospun nanofibers as substrates for cardiomyogenic differentiation of mesenchymal stem cells, J. Mater. Sci. Mater. Med. 24 (2013) 2577–2587; https://doi.org/10.1007/s10856-013-5003-5

  • 27. Y. Yang, X. Li, W. Cui, S. Zhou, R. Tan and C. Wang, Structural stability and release profiles of proteins from core-shell poly (DL-lactide) ultrafine fibers prepared by emulsion electrospinning, J. Biomed. Mater. Res. A86 (2008) 374–385; https://doi.org/10.1002/jbm.a.31595

  • 28. X. Xu, X. Chen, P. Ma, X. Wang and X. Jing, The release behavior of doxorubicin hydrochloride from medicated fibers prepared by emulsion-electrospinning, Eur. J. Pharm. Biopharm. 70 (2008) 165–170; https://doi.org/10.1016/j.ejpb.2008.03.010

  • 29. S. Agarwal and A. Greiner, On the way to clean and safe electrospinning—green electrospinning: emulsion and suspension electrospinning, Polym. Adv. Technol. 22 (2011) 372–378; https://doi.org/10.1002/pat.1883

  • 30. C. Wang, L. Wang and M. Wang, Evolution of core–shell structure: from emulsions to ultrafine emulsion electrospun fibers, Mater. Lett. 124 (2014) 192–196; https://doi.org/10.1016/j.mat-let.2014.03.086

  • 31. Y. Yang, X. Li, L. Cheng, S. He, J. Zou, F. Chen and Z. Zhang, Core-sheath structured fibers with pDNA polyplex loadings for the optimal release profile and transfection efficiency as potential tissue engineering scaffolds, Acta Biomater. 7 (2011) 2533–2543; https://doi.org/10.1016/j.act-bio.2011.02.031

  • 32. Y. Yang, X. Li, M. Qi, S. Zhou and J. Weng, Release pattern and structural integrity of lysozyme encapsulated in core-sheath structured poly(DL-lactide) ultrafine fibers prepared by emulsion electrospinning, Eur. J. Pharm. Biopharm. 69 (2008) 106–116; https://doi.org/10.1016/j.ejpb.2007.10.016

  • 33. L. Li, H. Li, Y. Qian, X. Li, G. K. Singh, L. Zhong, W. Liu, Y. Lv, K. Cai and L. Yang, Electrospun poly (ɛ-caprolactone)/silk fibroin core-sheath nanofibers and their potential applications in tissue engineering and drug release, Int. J. Biol. Macromol. 49 (2011) 223–232; https://doi.org/10.1016/j.ijbiomac.2011.04.018

  • 34. E. H. Sanders, R. Kloe korn, G. L. Bowlin, D. G. Simpson and G. E. Wnek, Two-phase electrospinning from a single electrified jet: microencapsulation of aqueous reservoirs in poly(ethylene-covinyl acetate) fibers, Macromolecules36 (2003) 3803–3805; https://pubs.acs.org/doi/abs/10.1021/ma021771l

  • 35. X. Li, Y. Su, C. He, H. Wang, H. Fong and X. Mo, Sorbitan monooleate and poly(L-lactide-co-ecaprolactone) electrospun nanofibers for endothelial cell interactions, J. Biomed. Mater. Res. A91 (2009) 878–885; https://doi.org/10.1002/jbm.a.32286

  • 36. I. C. Liao, S. Y. Chew and K. W. Leong, Aligned core-shell nanofibers delivering bioactive proteins, Nanomedicine (Lond)1 (2006) 465–471; https://doi.org/10.2217/17435889.1.4.465

  • 37. Z. M. Huang, C. L. He, A. Yang, Y. Zhang, X. J. Han, J. Yin and Q. Wu, Encapsulating drugs in biodegradable ultrafine fibers through co-axial electrospinning, J. Biomed. Mater. Res. A77 (2006) 169–179; https://doi.org/10.1002/jbm.a.30564

  • 38. A. L. Yarin, Coaxial electrospinning and emulsion electrospinning of core–shell fibers, Polym. Adv. Technol. 22 (2011) 310–317; https://doi.org/10.1002/pat.1781

  • 39. A. Arinstein, R. Avrahami and E. Zussman, Buckling behaviour of electrospun microtubes: a simple theoretical model and experimental observations, J. Phys. D: Appl. Phys. 42 (2009) 015507; https://doi.org/10.1088/0022-3727/42/1/015507

  • 40. S. N. Reznik, A. L. Yarin, E. Zussman and L. Bercovici, Evolution of a compound droplet attached to a core-shell nozzle under the action of a strong electric field, Phys. Fluids18 (2006) 062101; https://doi.org/10.1063/1.2206747

  • 41. Y. Zhang, Z. M. Huang, X. Xu, C. T. Lim and S. Ramakrishna, Preparation of core−shell structured PCL-r-gelatin bi-component nanofibers by coaxial electrospinning, Chem. Mater. 16 (2004) 3406–3409; https://pubs.acs.org/doi/abs/10.1021/cm049580f

  • 42. S. Chakraborty, I. C. Liao, A. Adler and K. W. Leong, Electrohydrodynamics: a facile technique to fabricate drug delivery systems, Adv. Drug Deliv. Rev. 61 (2009) 1043–1054; https://doi.org/10.1016/j.addr.2009.07.013

  • 43. Y. Dror, W. Salalha, R. Avrahami, E. Zussman, A. L. Yarin, R. Dersch, A. Greiner and J. H. Wendorff, One-step production of polymeric microtubes by co-electrospinning, Small3 (2007) 1064–1073; https://doi.org/10.1002/smll.200600536

  • 44. Y. N. Jiang, H. Y. Mo and D. G. Yu, Electrospun drug-loaded core-sheath PVP/zein nanofibers for biphasic drug release, Int. J. Pharm. 438 (2012) 232–239; https://doi.org/10.1016/j.ijpharm.2012.08.053

  • 45. S. A. Theron, E. Zussman and A. L. Yarin, Experimental investigation of the governing parameters in the electrospinning of polymer solutions, Polymer45 (2004) 2017–2030; http://dx.doi.org/10.1016/j.polymer.2004.01.024

  • 46. J. Pelipenko, J. Kristl, R. Rošic, S. Baumgartner and P. Kocbek, Interfacial rheology: an overview of measuring techniques and its role in dispersions and electrospinning, Acta Pharm. 62 (2012) 123–140; https://doi.org/10.2478/v10007-012-0018-x

  • 47. S. Tort, F. Acarturk and A. Besikci, Evaluation of three-layered doxycycline-collagen loaded nanofiber wound dressing, Int. J. Pharm. 529 (2017) 642–653; https://doi.org/10.1016/j.ijpharm.2017.07.027

  • 48. R. Rošic, J. Pelipenko, P. Kocbek, S. Baumgartner, M. Bešter-Rogač and J. Kristl, The role of rheology of polymer solutions in predicting nanofiber formation by electrospinning, Eur. Polym. J. 48 (2012) 1374–1384; https://doi.org/10.1016/j.eurpolymj.2012.05.001

  • 49. A. L. Yarin, B. Pourdeyhimi and S. Ramakrishna, Fundamentals and Applications of Micro and Nanofibers, Cambridge University Press, Cambridge 2014, pp. 25–35.

  • 50. H. Chen, N. Wang, J. Di, Y. Zhao, Y. Song and L. Jiang, Nanowire-in-microtube structured core/shell fibers via multifluidic coaxial electrospinning, Langmuir26 (2010) 11291–11296; https://pubs.acs.org/doi/abs/10.1021/la100611f

  • 51. Š. Zupančič, S. Baumgartner, Z. Lavrič, M. Petelin and J. Kristl, Local delivery of resveratrol using polycaprolactone nanofibers for treatment of periodontal disease, J. Drug Deliv. Sci. Technol. 30 (2015) 408–416; doi: http://dx.doi.org/10.1016/j.jddst.2015.07.009

  • 52. J. Pelipenko, P. Kocbek and J. Kristl, Nanofiber diameter as a critical parameter affecting skin cell response, Eur. J. Pharm. Sci. 66 (2015) 29–35; https://doi.org/10.1016/j.ejps.2014.09.022

  • 53. R. Li, Y. Ma, Y. Zhang, M. Zhang and D. Sun, Potential of rhBMP-2 and dexamethasone-loaded Zein/PLLA scaffolds for enhanced in vitro osteogenesis of mesenchymal stem cells, Coll. Surf. B Biointerf. 169 (2018) 384–394; https://doi.org/10.1016/j.colsur.2018.05.039

  • 54. G. Kabay, C. Demirci, G. Kaleli Can, A. E. Meydan, B. G. Dasan and M. Mutlu, A comparative study of single-needle and coaxial electrospun amyloid-like protein nanofibers to investigate hydrophilic drug release behavior, Int. J. Biol. Macromol. 114 (2018) 989–997; https://doi.org/10.1016/j.ijbiomac.2018.03.182

  • 55. P. Bullon, H. N. Newman and M. Battino, Obesity, diabetes mellitus, atherosclerosis and chronic periodontitis: a shared pathology via oxidative stress and mitochondrial dysfunction? Periodontol. 200064 (2014) 139–153; https://doi.org/10.1111/j.1600-0757.2012.00455.x

  • 56. K. T. Shalumon, C. Sheu, C. H. Chen, S. H. Chen, G. Jose, C. Y. Kuo and J. P. Chen, Multi-functional electrospun antibacterial core-shell nanofibrous membranes for prolonged prevention of post-surgical tendon adhesion and inflammation, Acta Biomater. 72 (2018) 121–136; https://doi.org/10.1016/j.actbio.2018.03.044

  • 57. V. Klang, C. Valenta and N. B. Matsko, Electron microscopy of pharmaceutical systems, Micron. 44 (2013) 45–74; https://doi.org/10.1016/j.micron.2012.07.008

  • 58. G. Jin, M. P. Prabhakaran, D. Kai and S. Ramakrishna, Controlled release of multiple epidermal induction factors through core-shell nanofibers for skin regeneration, Eur. J. Pharm. Biopharm. 85 (2013) 689–698; https://doi.org/10.1016/j.ejpb.2013.06.002

  • 59. T. T. Nguyen, C. Ghosh, S. G. Hwang, N. Chanunpanich and J. S. Park, Porous core/sheath composite nanofibers fabricated by coaxial electrospinning as a potential mat for drug release system, Int. J. Pharm. 439 (2012) 296–306 https://doi.org/10.1016/j.ijpharm.2012.09.019

  • 60. J. M. Deitzel, J. Kleinmeyer, D. Harris and N. C. Beck Tan, The effect of processing variables on the morphology of electrospun nanofibers and textiles, Polymer42 (2001) 261–272; http://dx.doi.org/10.1016/S0032-3861(00)00250-0

  • 61. X. Wang, Y. Yuan, X. Huang and T. Yue, Controlled release of protein from core–shell nanofibers prepared by emulsion electrospinning based on green chemical, J. Appl. Polym. Sci. 132 (2015) 41811: https://doi.org/10.1002/app.41811

  • 62. Q. P. Pham, U. Sharma and A. G. Mikos, Electrospun poly(e-caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: characterization of scaffolds and measurement of cellular infiltration, Biomacromolecules7 (2006) 2796–2805; https://pubs.acs.org/doi/abs/10.1021/bm060680j

  • 63. L. Ghasemi-Mobarakeh, D. Semnani and M. Morshed, A novel method for porosity measurement of various surface layers of nanofibers mat using image analysis for tissue engineering applications, J. Appl. Polym. Sci. 106 (2007) 2536–2542; https://doi.org/10.1002/app.26949

  • 64. A. Martins, S. Chung, A. J. Pedro, R. A. Sousa, A. P. Marques, R. L. Reis and N. M. Neves, Hierarchical starch-based fibrous scaffold for bone tissue engineering applications, J. Tiss. Engineer. Regen. Med. 3 (2009) 37–42; https://doi.org/10.1002/term.132

  • 65. S. B. Peters, D. A. Nelson, H. R. Kwon, M. Koslow, K. A. DeSantis and M. Larsen, TGFβ signaling promotes matrix assembly during mechanosensitive embryonic salivary gland restoration, Matrix Biol. 43 (2015) 109–124; https://doi.org/10.1016/j.matbio.2015.01.020

  • 66. J. Wang, L. Tian, L. He, N. Chen, S. Ramakrishna, K. F. So and X. Mo, Lycium barbarum polysaccharide encapsulated poly lactic-co-glycolic acid nanofibers: cost effective herbal medicine for potential application in peripheral nerve tissue engineering, Sci. Rep. 8 (2018) 8669; https://doi.org/10.1038/s41598-018-26837-z

  • 67. L. Sfakis, T. Kamaldinov, A. Khmaladze, Z. F. Hosseini, D. A. Nelson, M. Larsen and J. Castracane, Mesenchymal cells affect salivary epithelial cell morphology on PGS/PLGA core/shell nanofibers, Int. J. Mol. Sci. 19 (2018) 1031; https://doi.org/10.3390/ijms19041031

  • 68. X. Shen, D. Yu, L. Zhu, C. Branford-White, K. White and N. P. Chatterton, Electrospun diclofenac sodium loaded Eudragit(R) L 100-55 nanofibers for colon-targeted drug delivery, Int. J. Pharm. 408 (2011) 200–207; https://doi.org/10.1016/j.ijpharm.2011.01.058

  • 69. M. Zamani, M. Morshed, J. Varshosaz and M. Jannesari, Controlled release of metronidazole benzoate from poly e-caprolactone electrospun nanofibers for periodontal diseases, Eur. J. Pharm. Biopharm. 75 (2010) 179–185; https://doi.org/10.1016/j.ejpb.2010.02.002

  • 70. M. C. Bottino, R. A. Arthur, R. A. Waeiss, K. Kamocki, K. S. Gregson and R. L. Gregory, Biodegradable nanofibrous drug delivery systems: effects of metronidazole and ciprofloxacin on periodontopathogens and commensal oral bacteria, Clin. Oral Investig. 18 (2014) 2151–2158; https://doi.org/10.1007/s00784–014-1201-x

  • 71. M. Reise, R. Wyrwa, U. Muller, M. Zylinski, A. Volpel, M. Schnabelrauch, A. Berg. K. D. Jandt, D. C. Watts and B.W. Sigusch, Release of metronidazole from electrospunpoly(L-lactide-co-D/L-lactide) fibers for local periodontitis treatment, Dent. Mater. 28 (2012) 179–188; https://doi.org/10.1016/j.dental.2011.12.006

  • 72. U. Paaver, J. Heinämäki, I. Laidmäe, A. Lust, J. Kozlova, E. Sillaste, K. Kirsimäe, P. Veskia and K. Kogermann, Electrospun nanofibers as a potential controlled-release solid dispersion system for poorly water-soluble drugs, Int. J. Pharm. 479 (2015) 252–260; https://doi.org/10.1016/j.ijpharm.2014.12.024

  • 73. S. T. Ho and D. W. Hutmacher, A comparison of micro CT with other techniques used in the characterization of scaffolds, Biomaterials27 (2006) 1362–1376; https://doi.org/10.1016/j.biomaterials.2005.08.035

  • 74. S. T. Yohe, Y. L. Colson and M. W. Grinstaff, Superhydrophobic materials for tunable drug release: using displacement of air to control delivery rates, J. Am. Chem. Soc. 134 (2012) 2016–2019; https://pubs.acs.org/doi/10.1021/ja211148a

  • 75. S. T. Yohe, V. L. Herrera, Y. L. Colson and M. W. Grinstaff, Three-dimensional superhydrophobic electrospun meshes as reinforcement materials for sustained local drug delivery against colorectal cancer cells, J. Control. Rel. 162 (2012) 92–101; https://doi.org/10.1016/j.jconrel.2012.05.047

  • 76. Š. Zupančič, L. Preem, J. Kristl, M. Putrinš, T. Tenson, P. Kocbek and K. Kogermann, Impact of PCL nanofiber mat structural properties on hydrophilic drug release and antibacterial activity on periodontal pathogens, Eur. J. Pharm. Sci. 122 (2018) 347–358; https://doi.org/10.1016/j.ejps.2018.07.024

  • 77. W. Cui, X. Li, S. Zhou and J. Weng, Degradation patterns and surface wettability of electrospun fibrous mats, Polym. Degrad. Stab. 93 (2008) 731–738; https://doi.org/10.1016/j.polymdegradstab.2007.12.002

  • 78. L. Ghasemi-Mobarakeh, M. P. Prabhakaran, M. Morshed, M. Nasr-Esfahani and S. Ramakrishna, Electrospun poly(e-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering, Biomaterials29 (2008) 4532–4539; https://doi.org/10.1016/j.biomaterials.2008.08.007

  • 79. S. H. Ku and C. B. Park, Human endothelial cell growth on mussel-inspired nanofiber scaffold for vascular tissue engineering, Biomaterials31 (2010) 9431–9437; http://dx.doi.org/10.1016/j.biomaterials.2010.08.071

  • 80. A. N. Lembach, H. Tan, I. V. Roisman, T. Gambaryan-Roisman, Y. Zhang, C. Tropea and A. L. Yarin, Drop impact, spreading, splashing, and penetration into electrospun nanofiber mats, Langmuir26 (2010) 9516–9523; https://pubs.acs.org/doi/abs/10.1021/la100031d

  • 81. Š. Zupančič, P. Kocbek, S. Baumgartner and J. Kristl, Contribution of nanotechnology to improved treatment of periodontal disease, Curr. Pharm. Des. 21 (2015) 3257–3271; https://doi.org/10.2174/1381612821666150531171829

  • 82. C. K. Brown, H. D. Friedel, A. R. Barker, L. F. Buhse, S. Keitel, T. L. Cecil, J. Kraemer, J. M. Morris, C. Reppas, M. P. Stickelmeyer, C. Yomota and V. P. Shah, FIP/AAPS joint workshop report: dissolution/in vitro release testing of novel/special dosage forms, AAPS PharmSciTech. 12 (2011) 782–794; https://doi.org/10.1208/s12249-011-9634-x

  • 83. J. Pelipenko, P. Kocbek, B. Govedarica, R. Rošič, S. Baumgartner and J. Kristl, The topography of electrospun nanofibers and its impact on the growth and mobility of keratinocytes, Eur. J. Pharm. Biopharm. 84 (2013) 401–411; https://doi.org/10.1016/j.ejpb.2012.09.009

  • 84. M. C. Bottino, V. Thomas, G. Schmidt, Y. K. Vohra, T. M. Chu, M. J. Kowolik and G. M. Janowski, Recent advances in the development of GTR/GBR membranes for periodontal regeneration--a materials perspective, Dent. Mater. 28 (2012) 703–721; https://doi.org/10.1016/j.dental.2012.04.022

  • 85. Y. Kawabata, K. Wada, M. Nakatani, S. Yamada and S. Onoue, Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: basic approaches and practical applications, Int. J. Pharm. 420 (2011) 1–10; https://doi.org/10.1016/j.ijpharm.2011.08.032

  • 86. S. Kajdič, F. Vrečer and P. Kocbek, Preparation of poloxamer-based nanofibers for enhanced dissolution of carvedilol, Eur. J. Pharm. Sci. 117 (2018) 331–340; https://doi.org/10.1016/j.ejps.2018.03.006

  • 87. D. G. Yu, L. M. Zhu, C. J. Branford-White, J. H. Yang, X. Wang, Y. Li and W. Qian, Solid dispersions in the form of electrospun core-sheath nanofibers, Int. J. Nanomed. 6 (2011) 3271–3280; http://dx.doi.org/10.2147/IJN.S27468

  • 88. J. J. Li, Y. Y. Yang, D. G. Yu, Q. Du and X. L. Yang, Fast dissolving drug delivery membrane based on the ultra-thin shell of electrospun core-shell nanofibers, Eur. J. Pharm. Sci. 122 (2018) 195–204; https://doi.org/10.1016/j.ejps.2018.07.002

  • 89. D. G. Yu, X. X. Shen, C. Branford-White, K. White, L. M. Zhu and S. W. Bligh, Oral fast-dissolving drug delivery membranes prepared from electrospun polyvinylpyrrolidone ultrafine fibers, Nanotechnology20 (2009) 055104; https://doi.org/10.1088/0957-4484/20/5/055104

  • 90. M. E. Aulton and K. Taylor, Aulton’s Pharmaceutics: The Design and Manufacture of Medicines, 4th ed: Churchill Livingstone/Elsevier, China 2013, pp. 550–565.

  • 91. H. Frizzell, T. J. Ohlsen and K. A. Woodrow, Protein-loaded emulsion electrospun fibers optimized for bioactivity retention and pH-controlled release for peroral delivery of biologic therapeutics, Int. J. Pharm. 533 (2017) 99–110; https://doi.org/10.1016/j.ijpharm.2017.09.043

  • 92. U. E. Illangakoon, D. G. Yu, B. S. Ahmad, N. P. Chatterton and G. R. Williams, 5-Fluorouracil loaded Eudragit fibers prepared by electrospinning, Int. J. Pharm. 495 (2015) 895–902; https://doi.org/10.1016/j.ijpharm.2015.09.044

  • 93. D. Jia, Y. Gao and G. R. Williams, Core/shell poly(ethylene oxide)/Eudragit fibers for site-specific release, Int. J. Pharm. 523 (2017) 376–385; https://doi.org/10.1016/j.ijpharm.2017.03.038

  • 94. M. Jin, D. G. Yu, X. Wang, C. F. Geraldes, G. R. Williams and S. W. Bligh, Electrospun contrast-agent-loaded fibers for colon-targeted MRI, Adv. Healthc. Mater. 5 (2016) 977–985; https://doi.org/10.1002/adhm.201500872

  • 95. L. E. Aguilar, A. R. Unnithan, A. Amarjargal, A. P. Tiwari, S. T. Hong, C. H. Park and C. S. Kim, Electrospun polyurethane/Eudragit (R) L100-55 composite mats for the pH dependent release of paclitaxel on duodenal stent cover application, Int. J. Pharm. 478 (2015) 1–8; https://doi.org/10.1016/j.ijpharm.2014.10.057

  • 96. A. Akhgari, Z. Heshmati, H. Afrasiabi Garekani, F. Sadeghi, A. Sabbagh, B. Sharif Makhmalzadeh and A. Nokhodchi, Indomethacin electrospun nanofibers for colonic drug delivery: in vitro dissolution studies, Coll. Surf. B Biointerf. 152 (2017) 29–35; https://doi.org/10.1016/j.colsurfb.2016.12.035

  • 97. K. Karthikeyan, S. Guhathakarta, R. Rajaram and P. S. Korrapati, Electrospun zein/eudragit nanofibers based dual drug delivery system for the simultaneous delivery of aceclofenac and pantoprazole, Int. J. Pharm. 438 (2012) 117–122; https://doi.org/10.1016/j.ijpharm.2012.07.075

  • 98. J. Siepmann, R. A. Siegel and M. J. Rathbone, Fundamentals and Applications of Controlled Release Drug Delivery, 1 ed: Springer US 2012, pp. 19–43.

  • 99. S. K. Tiwari, R. Tzezana, E. Zussman and S. S. Venkatraman, Optimizing partition-controlled drug release from electrospun core-shell fibers, Int. J. Pharm. 392 (2010) 209–217; https://doi.org/10.1016/j.ijpharm.2010.03.021

  • 100. X. Sun, L. R. Nobles, H. G. Börner and R. J. Spontak, Field-driven surface segregation of biofunctional species on electrospun PMMA/PEO microfibers, Macromol. Rapid Commun. 29 (2008) 1455–1460; https://doi.org/10.1002/marc.200800163

  • 101. Z. Li, H. Kang, N. Che, Z. Liu, P. Li, W. Li, C. Zhang, C. Cao, R. Liu and Y. Huang, Controlled release of liposome-encapsulated naproxen from core-sheath electrospun nanofibers, Carbohydr. Polym. 111 (2014) 18–24; https://doi.org/10.1016/j.carbpol.2014.04.017

  • 102. A. Szentivanyi, T. Chakradeo, H. Zernetsch and B. Glasmacher, Electrospun cellular microenvironments: understanding controlled release and scaffold structure, Adv. Drug Del. Rev. 63 (2011) 209–220; https://doi.org/10.1016/j.addr.2010.12.002

  • 103. E. M. Fulcher, R. M. Fulcher and C. D. Soto, Pharmacology: Principles and Applications, 3rd ed., Elsevier Health Sciences, St. Louis 2012.

  • 104. G. Walsh, Biopharmaceuticals and biotechnology medicines: an issue of nomenclature, Eur. J. Pharmaceut. Sci. 15 (2002) 135–138; http://dx.doi.org/10.1016/S0928-0987(01)00222-6

  • 105. Y. Lokko, M. Heijde, K. Schebesta, P. Scholtèsa, M. Van Montagu and M. Giacca, Biotechnology and the bioeconomy – Towards inclusive and sustainable industrial development, New Biotechnol. 40A (2018) 5–10; https://doi.org/10.1016/j.nbt.2017.06.005

  • 106. M. A. H. Capelle, R. Gurny and T. Arvinte, High throughput screening of protein formulation stability: Practical considerations, Eur. J. Pharmaceut. Biopharmaceut. 65 (2007) 131–148; http://dx.doi.org/10.1016/j.ejpb.2006.09.009

  • 107. M. Manning, D. Chou, B. Murphy, R. Payne and D. Katayama, Stability of protein pharmaceuticals: an update, Pharmaceutic Res. 27 (2010) 544–575; https://doi.org/10.1007/s11095-009-0045-6

  • 108. S. J. Shire, Formulation and manufacturability of biologics, Curr. Opin. Biotechnol. 20 (2009) 708–714; https://doi.org/10.1016/j.copbio.2009.10.006

  • 109. E. J. McNally and J. E. Hastedt, Protein Formulation and Delivery, 2nd ed., Taylor & Francis, Boca Raton 2007, pp. 1–6.

  • 110. H. Jiang, L. Wang and K. Zhu, Coaxial electrospinning for encapsulation and controlled release of fragile water-soluble bioactive agents, J. Control. Rel. 193 (2014) 296–303; https://doi.org/10.1016/j.jconrel.2014.04.025

  • 111. H. Jiang, Y. Hu, Y. Li, P. Zhao, K. Zhu and W. Chen, A facile technique to prepare biodegradable coaxial electrospun nanofibers for controlled release of bioactive agents, J. Control. Rel. 108 (2005) 237–243; https://doi.org/10.1016/j.jconrel.2005.08.006

  • 112. W. Ji, F. Yang, J. J. van den Beucken, Z. Bian, M. Fan, Z. Chen and J. A. Jansen, Fibrous scaffolds loaded with protein prepared by blend or coaxial electrospinning, Acta Biomater. 6 (2010) 4199–4207; https://doi.org/10.1016/j.actbio.2010.05.025

  • 113. V. Bertoncelj, J. Pelipenko, J. Kristl, M. Jeras, M. Cukjati and P. Kocbek, Development and bio-evaluation of nanofibers with blood-derived growth factors for dermal wound healing, Eur. J. Pharm. Biopharm. 88 (2014) 64–74; https://doi.org/10.1016/j.ejpb.2014.06.001

  • 114. A. Saraf, L. S. Baggett, R. M. Raphael, F. K. Kasper and A. G. Mikos, Regulated non-viral gene delivery from coaxial electrospun fiber mesh scaffolds, J. Control. Rel. 143 (2010) 95–103; https://doi.org/10.1016/j.jconrel.2009.12.009

  • 115. L. V. Hooper and J. I. Gordon, Commensal host-bacterial relationships in the gut, Science292 (2001) 1115–1118; https://doi.org/10.1016/j.jconrel.2009.12.009

  • 116. Z. K. Nagy, I. Wagner, Á. Suhajda, T. Tobak, A. H. Harasztos, T. Vigh, P. L. Sóti, H. Pataki, K. Molnár and G. Marosi, Nanofibrous solid dosage form of living bacteria prepared by electrospinning, Express Polym. Lett. 8 (2014) 352–361; https://doi.org/10.3144/expresspolymlett.2014.39

  • 117. Š. Zupančič, T. Rijavec, A. Lapanje, M. Petelin, J. Kristl and P. Kocbek, Nanofibers with incorporated autochthonous bacteria as potential probiotics for local treatment of periodontal disease, Biomacromolecules19 (2018) 4299–4306; https://pubs.acs.org/doi/10.1021/acs.biomac.8b01181

  • 118. A. Lopez-Rubio, E. Sanchez, Y. Sanz and J. M. Lagaron, Encapsulation of living bifidobacteria in ultrathin PVOH electrospun fibers, Biomacromolecules10 (2009) 2823–2829; https://pubs.acs.org/doi/abs/10.1021/bm900660b

OPEN ACCESS

Journal + Issues

Search