Reversed phase HPLC for strontium ranelate: Method development and validation applying experimental design


A reverse-phase HPLC (RP-HPLC) method was developed for strontium ranelate using a full factorial, screening experimental design. The analytical procedure was validated according to international guidelines for linearity, selectivity, sensitivity, accuracy and precision. A separate experimental design was used to demonstrate the robustness of the method. Strontium ranelate was eluted at 4.4 minutes and showed no interference with the excipients used in the formulation, at 321 nm. The method is linear in the range of 20–320 μg mL−1 (R2 = 0.99998). Recovery, tested in the range of 40–120 μg mL−1, was found to be 96.1–102.1 %. Intra-day and intermediate precision RSDs ranged from 1.0–1.4 and 1.2–1.4 %, resp. The limit of detection and limit of quantitation were 0.06 and 0.20 μg mL−1, resp. The proposed technique is fast, cost-effective, reliable and reproducible, and is proposed for the routine analysis of strontium ranelate.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. J. Y. Reginster, A. Neuprez, N. Dardenne, C. Beaudart, P. Emonts and O. Bruyère, Efficacy and safety of currently marketed anti-osteoporotic medications, Best Pract. Res. Clin. Endocrinol. Metab. 28 (2014) 809–384;

  • 2. European Medicines Agency, Protelos/Osseor to Remain Available But With Further Restrictions, London, February 2014;; last access date April 29, 2017.

  • 3. K. Mythili, S. Gayatri, K. R. Teja, K. Chitra and C. U. M. Reddy, Development and validation of RP-HPLC method for the estimation of strontium ranelate in sachet, Int. J. Pharm. Bio. Sci. 2 (2011) 258–263.

  • 4. B. R. C. S. Reddy and N. V. B Rao, A validated stability indicating RP-HPLC method for the determination of strontium ranelate a dual acting bone agent in bulk and sachet dosage form, Rasayan J. Chem. 7 (2014) 20–27.

  • 5. H. L. Yin and Y. J. Xu, RP-HPLC determination of strontium ranelate and its related substances, Chin. J. Pharm. Anal. 2 (2009) 330–333.

  • 6. A. V. Gajbhar, V. P. Choudhari and B. S. Kuchekar, Development and validation of a HPTLC method for determination of strontium ranelate in the presence of its impurities, Int. J. Pharm. Bio. Sci. 6 (2015) 386–394.

  • 7. A. S. Swami, S. A. Pishawikar and H. N. More, UV-spectrophotometric method development and validation for estimation of strontium ranelate in bulk, Int. J. Pharm. Bio. Sci. 3 (2012) 171–176.

  • 8. M. Rizk, M. M. A. El-Alamin and M. I. Moawad, A simple kinetic spectrophotometric method for determination of strontium ranelate in bulk and pharmaceutical dosage form, Indo Am. J. Pharm. Res. 5 (2015) 2503–2512;

  • 9. R. C. de Carvalho, A. D. P. Netto and F. F. de Carvalho Marques, Simultaneous determination of strontium ranelate and aspartame in pharmaceutical formulation for the treatment of postmenopausal osteoporosis by capillary zone electrophoresis, Microchem. J. 117 (2014) 214–219;

  • 10. B. V. Srinivas, U. V. Prasad, M. L. N. Acharyulua and T. S. Reddy, Determination of strontium ranelate in pure and pharmaceutical formulations by oxidimetry, Anal. Chem. Indian J. 13 (2013) 205–209.

  • 11. M. Rizk, M. M. A. El-Alamin, H. A. M. Hendawy and M. I. Moawad, Highly sensitive differential pulse and square wave voltammetric methods for determination of strontium ranelate in bulk and pharmaceutical dosage form, Electroanalysis 28 (2016) 770–777;

  • 12. Z. I. Szabó, B. Székely-Szentmiklósi, B. Deák, I. Székely-Szentmiklósi, B. Kovács, K. Zöldi and E. Sipos, Study of the effect of formulation variables on the characteristics of combination tablets containing enalapril maleate and indapamide as active substances using experimental design, Acta Pharm. 66 (2016) 191–206;

  • 13. A. Gavan, A. Porfire, C. Marina and I. Tomuta, Formulation and pharmaceutical development of quetiapine fumarate sustained release matrix tablets using a QbD approach, Acta Pharm. 67 (2017) 53–70;

  • 14. A. M. Kashid, D. A. Ghorpade, P. P. Toranmal and S. C. Dhawale, Development and validation of reversed phase HPLC method for the determination of vildagliptin using an experimental design, J. Anal. Chem. 70 (2015) 510–515;

  • 15. L. Kumar, M. S. Reddy, R. S. Managuli and P. K. Girish, Full factorial design for optimization, development and validation of HPLC method to determine valsartan in nanoparticles, Saudi Pharm. J. 23 (2015) 549–555;

  • 16. M. Carcu-Dobrin, M. Budau, G. Hancu, L. Gagyi, A. Rusu and H. Kelemen, Enantioselective analysis of fluoxetine in pharmaceutical formulations by capillary zone electrophoresis, Saudi Pharm. J. 25 (2017) 397–403;

  • 17. L. Eriksson, E. Johansson, N. Kettaneh-Wold, C. Wilkström and S. Wold, Design of Experiments – Principles and Applications, 3rd ed., MKS Umetrics AB, Umeå 2008.

  • 18. User guide to MODDE, MKS Umetrics AB, Malmö 2014;; last access date November 10, 2017.

  • 19. R. Peraman, K. Bhadraya and Y. P. Reddy, Analytical quality by design: a tool for regulatory flexibility and robust analytics, Int. J. Anal. Chem. 2 (2015) 1–9;

  • 20. International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use, ICH Harmonised Tripartite Guideline, Pharmaceutical Development Q8 (R2), Step 4, ICH, August 2009;; last access date: February 20, 2017.

  • 21. P. K. Sahu, N. R. Ramisetti, T. Cecchi, S. Swain, C. S. Patro and J. Panda, An overview of experimen-tal designs in HPLC method development and validation, J. Pharm. Biomed. Anal. 147 (2018) 590–611;

  • 22. M. Marusteri and V. Bacarea, Comparing groups for statistical differences: how to choose the right statistical test? Biochem. Med. 20 (2010) 15–32;


Journal + Issues