Biomimetic insulin-imprinted polymer nanoparticles as a potential oral drug delivery system

Open access

Abstract

In this study, we investigate molecularly imprinted polymers (MIPs), which form a three-dimensional image of the region at and around the active binding sites of pharmaceutically active insulin or are analogous to b cells bound to insulin. This approach was employed to create a welldefined structure within the nanospace cavities that make up functional monomers by cross-linking. The obtained MIPs exhibited a high adsorption capacity for the target insulin, which showed a significantly higher release of insulin in solution at pH 7.4 than at pH 1.2. In vivo studies on diabetic Wistar rats showed that the fast onset within 2 h is similar to subcutaneous injection with a maximum at 4 h, giving an engaged function responsible for the duration of glucose reduction for up to 24 h. These MIPs, prepared as nanosized material, may open a new horizon for oral insulin delivery.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. F. Nakayama T. Yasuda S. Umeda M. Asada T. Imamura V. Meineke and M. Akashi Fibroblast growth factor-12 (FGF12) translocation into intestinal epithelial cells is dependent on a novel cellpenetrating peptide domain involvement of internalization in the in vivo role of exogenous FGF12 J. Biol. Chem. 286 (2011) 25823-25834; DOI: 10.1074/jbc.M110.198267.

  • 2. L. M. Ensign R. Cone and J. Hanes Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers Adv. Drug Deliv. Rev. 64 (2012) 557-570; DOI: 10.1016/j.addr.2011.12.009.

  • 3. S. A. Zaidi Latest trends in molecular imprinted polymer based drug delivery systems RSC Adv. 6 (2016) 88807-88819; DOI: 10.1039/c6ra18911c.

  • 4. R. Schirhagl D. Podlipna P. A. Lieberzeit and F. L. Dickert Comparing biomimetic and biological receptors for insulin sensing Chem. Commun. 46 (2010) 3128-3130.

  • 5. R. Suedee W. Naklua S. Laengchokshoi K. Thepkaue P. Pathaburee and M. Nuanplub Investigation of a self-assembling microgel containing an (S)-propranolol molecularly imprinted polymer in a native tissue microenvironment: Part I preparation and characterization. Part II biological application and testing Process Biochem. 50 (2015) 517-544.

  • 6. K. Eunkyung and C. Seung-Woo Biomimetic polymer scaffolds to promote stem cell-mediated osteogenesis Int. J. Stem Cells 6 (2013) 87-91.

  • 7. R. Schirhagl U. Latif D. Podlipna H. Blumenstock and F. L. Dickert Natural and biomimetic materials for the detection of insulin Anal. Chem. 84 (2012) 3908-3913.

  • 8. E. M. Kolonko J. K. Pontrello S. L. Mangold and L. L. Kiessling General synthetic route to cellpermeable block copolymers via ROMP J. Am. Chem. Soc. 131 (2009) 7327-7333.

  • 9. F. Puoci G. Cirillo M. Curcio O. I. Parisi F. Iemma and N. Picci Molecularly imprinted polymers in drug delivery: state of art and future perspectives Expert Opin. Drug Deliv. 8 (2011) 1379-1393; DOI: 10.1517/17425247.2011.609166.

  • 10. A. Viehof L. Javot A. Béduneau Y. Pellequer and A. Lamprecht Oral insulin delivery in rats by nanoparticles prepared with non-toxic solvents Int. J. Pharm. 443 (2013) 169-174; DOI: 10.1016/j.ijpharm.2013.01.017.

  • 11. E. Verspohl and H. Ammon Evidence for the presence of insulin receptors in rat islets of Langerhans J. Clin. Invest. 65 (1980) 1230; DOI: 10.1172/JCI109778.

  • 12. D. R. Kryscio and N. A. Peppas Critical review and perspective of macromolecularly imprinted polymers Acta Biomater. 8 (2012) 461-473; DOI: 10.1016/j.actbio.2011.11.005.

  • 13. L. Achar and N. Peppas Preparation characterization and mucoadhesive interactions of poly (methacrylic acid) copolymers with rat mucosa J. Control. Release 31 (1994) 271-276; DOI: 10.1016/0168-3659(94)90009-4.

  • 14. S. Li E. N. Davis X. Huang B. Song R. Peltzman D. M. Sims Q. Lin and Q. Wang Synthesis and development of poly (n-hydroxyethyl acrylamide)-ran- 3-acrylamidophenylboronic acid polymer fluid for potential application in affinity sensing of glucose J. Diabetes Sci. Technol. 5 (2011) 1060-1067.

  • 15. J. Wang P. A. Cormack D. C. Sherrington and E. Khoshdel Synthesis and characterization of micrometer-sized molecularly imprinted spherical polymer particulates prepared via precipitation polymerization Pure Appl. Chem. 79 (2007) 1505-1519; DOI: 10.1351/pac200779091505.

  • 16. G. Pan Q. Guo C. Cao H. Yang and B. Li Thermo-responsive molecularly imprinted nanogels for specific recognition and controlled release of proteins Soft Matter 9 (2013) 3840-3850; DOI: 10.1039/C3SM27505A.

  • 17. S. Chaitidou O. Kotrotsiou K. Kotti O. Kammona M. Bukhari and C. Kiparissides Precipitation polymerization for the synthesis of nanostructured particles Mater. Sci. Eng. B 152 (2008) 55-59; DOI: 10.1016/j.mseb.2008.06.024.

  • 18. J. D. Carter S. B. Dula K. L. Corbin R. Wu and C. S. Nunemaker A practical guide to rodent islet isolation and assessment Biol. Proced. Online 11 (2009) 3-31; DOI: 10.1007/s12575-009-9021-0.

  • 19. H. He D. Xiao J. He H. Li H. He H. Dai and J. Peng Preparation of a core-shell magnetic ionimprinted polymer via a sol-gel process for selective extraction of Cu (ii) from herbal medicines Analyst 139 (2014) 2459-2466; DOI: 10.1039/c3an02096g.

  • 20. S. Sajeesh K. Bouchemal V. Marsaud C. Vauthier and C. P. Sharma Cyclodextrin complexed insulin encapsulated hydrogel microparticles: An oral delivery system for insulin J. Control. Release 147 (2010) 377-384; DOI: 10.1016/j.jconrel.2010.08.007.

  • 21. A. Cilek N. Celebi F. Tırnaksız and A. Tay A lecithin-based microemulsion of rh-insulin with aprotinin for oral administration: Investigation of hypoglycemic effects in non-diabetic and STZinduced diabetic rats Int. J. Pharm. 298 (2005) 176-185; DOI: 10.1016/j.ijpharm.2005.04.016.

  • 22. W. Ritschel G. Ritschel B. Ritschel and P. Lücker Rectal delivery system for insulin Methods Find. Exp. Clin. Pharmacol. 10 (1988) 645-656.

  • 23. M. P. Desai V. Labhasetwar G. L. Amidon and R. J. Levy Gastrointestinal uptake of biodegradable microparticles: effect of particle size Pharm. Res. 13 (1996) 1838-1845.

  • 24. I. Stützer D. Esterházy and M. Stoffel The pancreatic beta cell surface proteome Diabetologia 55 (2012) 1877-1889; DOI: 10.1007/s00125-012-2531-3.

  • 25. M. García-Díaz C. Foged and H. M. Nielsen Improved insulin loading in poly (lactic-co-glycolic) acid (PLGA) nanoparticles upon self-assembly with lipids Int. J. Pharm. 482 (2015) 84-91; DOI: 10.1016/j.ijpharm.2014.11.047.

  • 26. T. Andreani A. L. R. de Souza C. P. Kiill E. N. Lorenzon J. F. Fangueiro A. C. Calpena M. V. Chaud M. L. Garcia M. P. D. Gremião and A. M. Silva Preparation and characterization of PEGcoated silica nanoparticles for oral insulin delivery Int. J. Pharm. 473 (2014) 627-635; DOI: 10.1016/j.ijpharm.2014.07.049.

  • 27. B. C. Tang M. Dawson S. K. Lai Y.-Y. Wang J. S. Suk M. Yang P. Zeitlin M. P. Boyle J. Fu and J. Hanes Biodegradable polymer nanoparticles that rapidly penetrate the human mucus barrier Proc. Natl. Acad. Sci. U.S.A. 106 (2009) 19268-19273; DOI: 10.1073/pnas.0905998106.

  • 28. P. de Sousa Irene M. Thomas S. Corinna F. Barbara and B.-S. Andreas Insulin loaded mucus permeating nanoparticles: Addressing the surface characteristics as feature to improve mucus permeation Int. J. Pharm. (2016); DOI: 10.1016/j.ijpharm.2016.01.022.

  • 29. K. Rostamizadeh H. Abdollahi and C. Parsajoo Synthesis optimization and characterization of molecularly imprinted nanoparticles Int. Nano Lett. 3 (2013) 1-9; DOI: 10.1186/2228-5326-3-20.

  • 30. V. P. Drachev M. D. Thoreson E. N. Khaliullin V. J. Davisson and V. M. Shalaev Surface-enhanced Raman difference between human insulin and insulin lispro detected with adaptive nanostructures J. Phys. Chem. B 108 (2004) 18046-18052; DOI: 10.1021/jp047254h.

  • 31. H. Zeng Y. Wang X. Liu J. Kong and C. Nie Preparation of molecular imprinted polymers using bi-functional monomer and bi-crosslinker for solid-phase extraction of rutin Talanta 93 (2012) 172-181; DOI: 10.1016/j.talanta.2012.02.008.

  • 32. L. Xu Y.-A. Huang Q.-J. Zhu and C. Ye Chitosan in molecularly-imprinted polymers: Current and Future Prospects Int. J. Mol. Sci. 16 (2015) 18328-18347; DOI: 10.3390/ijms160818328.

  • 33. M. Odabaşi R. Say and A. Denizli Molecular imprinted particles for lysozyme purification Mater. Sci. Eng. C 27 (2007) 90-99; DOI: 10.1016/j.msec.2006.03.002.

  • 34. S. Scorrano L. Mergola R. Del Sole and G. Vasapollo Synthesis of molecularly imprinted polymers for amino acid derivates by using different functional monomers Int. J. Mol. Sci. 12 (2011) 1735-1743; DOI: 10.3390/ijms12031735.

  • 35. M. R. Avadi A. M. M. Sadeghi N. Mohammadpour S. Abedin F. Atyabi R. Dinarvand and M. Rafiee-Tehrani Preparation and characterization of insulin nanoparticles using chitosan and arabic gum with ionic gelation method Nanomedicine 6 (2010) 58-63; DOI: 10.1016/j.nano.2009.04.007.

  • 36. C. Ferrero D. Massuelle and E. Doelker Towards elucidation of the drug release mechanism from compressed hydrophilic matrices made of cellulose ethers. II. Evaluation of a possible swellingcontrolled drug release mechanism using dimensionless analysis J. Control. Release 141 (2010) 223-233; DOI: 10.1016/j.jconrel.2009.09.011.

  • 37. S. Li A. Tiwari Y. Ge and D. Fei A pH-responsive low crosslinked molecularly imprinted insulin delivery system Adv. Mater. Lett. 1 (2010) 4-10; DOI: 10.5185/amlett.2010.4110.

  • 38. E. Lee K. Kim M. Choi Y. Lee J.-W. Park and B. Kim Development of smart delivery system for ascorbic acid using pH-responsive P (MAA-co-EGMA) hydrogel microparticles Drug Deliv. 17 (2010) 573-580; DOI: 10.3109/10717544.2010.500636.

  • 39. Y. Hoshino T. Urakami H. Koido and K. J. Shea Recognition neutralization and clearance of target peptides in the bloodstream of living mice by molecularly imprinted polymer nanoparticles: A plastic antibody J. Am. Chem. Soc. 132 (2010) 6644-6645; DOI: 10.1021/ja102148f.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 1.405
5-year IMPACT FACTOR: 1.701

CiteScore 2018: 1.47

SCImago Journal Rank (SJR) 2018: 0.314
Source Normalized Impact per Paper (SNIP) 2018: 0.637

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 552 342 7
PDF Downloads 349 244 4