Lipid-based systems as a promising approach for enhancing the bioavailability of poorly water-soluble drugs

Open access


Low oral bioavailability as a consequence of low water solubility of drugs is a growing challenge to the development of new pharmaceutical products. One of the most popular approaches of oral bioavailability and solubility enhancement is the utilization of lipid-based drug delivery systems. Their use in product development is growing due to the versatility of pharmaceutical lipid excipients and drug formulations, and their compatibility with liquid, semi-solid, and solid dosage forms. Lipid formulations, such as self-emulsifying (SEDDS), self-microemulsifying SMEDDS) and self- -nanoemulsifying drug delivery systems (SNEDDS) were explored in many studies as an efficient approach for improving the bioavailability and dissolution rate of poorly water-soluble drugs. One of the greatest advantages of incorporating poorly soluble drugs into such formulations is their spontaneous emulsification and formation of an emulsion, microemulsion or nanoemulsion in aqueous media. This review article focuses on the following topics. First, it presents a classification overview of lipid-based drug delivery systems and mechanisms involved in improving the solubility and bioavailability of poorly water-soluble drugs. Second, the article reviews components of lipid-based drug delivery systems for oral use with their characteristics. Third, it brings a detailed description of SEDDS, SMEDDS and SNEDDS, which are very often misused in literature, with special emphasis on the comparison between microemulsions and nanoemulsions.

  • 1. J. M. Custodio, C. Y. Wu and L. Z. Benet, Predicting drug disposition, absorption/elimination/ transporter interplay and the role of food on drug absorption, Adv. Drug Deliver. Rev. 60 (2008) 717-733; DOI: 10.1016/j.addr.2007.08.043.

  • 2. A. Chaudhary, U. Nagaich, N. Gulati, V. K. Sharma and R. L. Khosa, Enhancement of solubilization and bioavailability of poorly soluble drugs by physical and chemical modifications: A recent review, J. Adv. Pharm. Educ. Res. 2 (2012) 32-67.

  • 3. K. Kohli, S. Chopra, D. Dhar, S. Arora and R. K. Khar, Self-emulsifying drug delivery systems: an approach to enhance oral bioavailability, Drug Discov. Today 15 (2010) 958-965; DOI: 10.1016/ j.drudis.2010.08.007.

  • 4. Y. Kawabata, K. Wada, M. Nakatani, S. Yamada and S. Onoue, Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: Basic approaches and practical applications, Int. J. Pharm. 420 (2011) 1-10; DOI: 10.1016/j.ijpharm.2011.08.032.

  • 5. T. Loftsson, E. M. Brewater and M. Masson, Role of cyclodextrins in improving oral drug delivery, Am. J. Drug Deliv. 2 (2004) 261-275; DOI: 10.2165/00137696-200402040-00006.

  • 6. S. B. Murdandea and M. J. Gumkowskia, Development of a self-emulsifying formulation that reduces the food effect for torcetrapib: An overview, Int. J. Pharm. 51 (2008) 15-22; DOI: 10. 1016/j.ijpharm.2007.09.015.

  • 7. J. Parul, A. Geeta and K. Amanpreet, Bioavailability enhancement of poorly soluble drugs by SMEDDS: A review, J. Drug Deliv. Ther. 3 (2013) 98-109.

  • 8. S. Saroy, D. A. Baby and M. Sabitha, Current trends in lipid based delivery systems and its applications in drug delivery, Asian J. Pharm. Clin. Res. 5 (2012) 4-9.

  • 9. H. J. C. Porter, L. N. Trevaskis and W. N. Charman, Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs, Nat. Rev. Drug Discov. 6 (2007) 231-248; DOI: 10. 1038/nrd2197.

  • 10. B. K. Nanjwade, D. J. Patel, R. A. Udhani and F. V. Manvi, Function of lipids for enhancement of oral bioavailability of poorly water-soluble drugs, Sci. Pharm. 79 (2011) 705-727; DOI: 10.3797/ scipharm.1105-09.

  • 11. W. C. Pouton and J. H. C. Porter, Formulation of lipid-based delivery systems for oral administration: Materials, methods and strategies, Adv. Drug Deliver. Rev. 60 (2008) 625-637; DOI: 10. 1016/j.addr.2007.10.010.

  • 12. W. C. Pouton, Formulation of poorly water-soluble drugs for oral administration: Physicochemical and physiological issues and the lipid formulation classification system, Eur. J. Pharm. Sci. 29 (2006) 278-287; DOI: 10.1016/j.ejps.2006.04.016.

  • 13. V. Jannin, J. Musakhanian and D. Marchaud, Approaches for the development of solid and semi-solid lipid-based formulations, Adv. Drug Deliver. Rev. 60 (2008) 734-746; DOI: 10.1016/j. addr.2007.09.006.

  • 14. B. V. Rajesh, T. K. Reddy, G. Srikanth, V. Mallikarjun and P. Nivethithai, Lipid based self-emulsifying drug delivery system (SEDDS) for poorly water-soluble drugs: A review, J. Glob. Pharma Technol. 2 (2010) 47-55.

  • 15. R. N. Gupta, R. Gupta and R. G. Singh, Enhancement of oral bioavailability of lipophilic drugs from self-microemulsifying drug delivery systems (SMEDDS), Int. J. Drug Dev. Res. 1 (2009) 10-18.

  • 16. K. Mohsin, A. A. Shahba and F. K. Alanazi, Lipid based self-emulsifying formulations for poorly water soluble drugs- an excellent opportunity, Ind. J. Pharm. Edu. Res. 46 (2012) 88-96.

  • 17. P. Gao and W. Morozowich, Development of supersaturatable self-emulsifying drug delivery system formulation for improving the oral absorption of poorly soluble drugs, Expert Opin. Drug Del. 3 (2006) 97-110; DOI: 10.1517/17425247.3.1.97.

  • 18. B. D. Tarr and S. H. Yalkowsky, Enhanced intestinal absorption of cyclosporine in rats through the reduction of emulsion droplet size, Pharm. Res. 6 (1989), 40-43; DOI: 10.1023/A:10158435 17762.

  • 19. B. Singh, S. Bandopadhyay, R. Kapil, R. Singh and O. Katare, Self-emulsifying drug delivery systems (SEDDS): Formulation development, characterization, and applications, Crit. Rev. Ther. Drug 26 (2009) 427-521.

  • 20. J. H. Lin, W. Chen and J. King, The effect of dosage form on oral absorption of L-365, 260, a potent CCK receptor antagonist in dogs, Pharm. Res. 8 (1991) 272.

  • 21. M. J. Groves and D. A. Degalindez, The self-emulsifying action of mixed surfactants in oil, Acta Pharm. Suec. 13 (1976) 361-372.

  • 22. S. M. Khoo, A. J. Humberstone, C. J. H. Porter, G. A. Edwards and W. N. Charman, Formulation design and bioavailability assessment of lipidic self-emulsifying formulations of halofantrine, Int. J. Pharm. 167 (1998) 155-164; DOI: 10.1016/S0378-5173(98)00054-4.

  • 23. K. J. Palin and C. G. Wilson, The effect of different oils on the absorption of probucol in the rat, J. Pharm. Pharmacol. 36 (1984) 641-643; DOI: 10.1111/j.2042-7158.1984.tb04919.

  • 24. J. Rao and D. J. McClements, Formation of flavor oil microemulsions, nanoemulsions and emulsions: influence of composition and preparation method, J. Agric. Food Chem. 59 (2011) 5026-5035; DOI: 10.1021/jf200094m.

  • 25. M. Stuchlik and S. @ák, Lipid-based vehicle for oral drug delivery, Biomed. Pap. 145 (2001) 17-26.

  • 26. P. Constantinides, Lipid microemulsions for improving drug dissolution and oral absorption: physical and biopharmaceutical aspects, Pharm. Res. 12 (1995) 1561-1572; DOI: 10.1023/A: 1016268311867.

  • 27. M. Kimura, M. Shizuki, K. Miyoshi, T. Sakai, H. Hidaka, H. Takamura and T. Matoba, Relationship between the molecular structures and emulsification properties of edible oils, Biosci. Biotech. Bioch. 58 (1994) 1258-1261; DOI: 10.1271/bbb.58.1258.

  • 28. M. Grovea and A. Mullertzb, Bioavailability of seocalcitol II: development and characterisation of self-microemulsifying drug delivery systems (SMEDDS) for oral administration containing medium and long chain triglycerides, Eur. J. Pharm. Sci. 28 (2006) 233-234; DOI: 10.1016/j.ejps.2006.02.005.

  • 29. C. J. Porter, A. M. Kaukonen and B. J. Boyd, Susceptibility to lipase-mediated digestion reduces the oral bioavailability of danazol after administration as a medium-chain lipid-based microemulsion formulation, Pharm. Res. 8 (2004) 1405-1412; DOI: 10.1023/

  • 30. H. N. Prajapati, M. D. Dalrymple and T. M. A. Serajuddin, A comparative evaluation of mono-, di- and triglyceride of medium chain fatty acids by lipid/surfactant/water phase diagram, solubility determination and dispersion testing for application in pharmaceutical dosage form development, Pharm. Res. 29 (2012) 285-305; DOI: 10.1007/s11095-011-0541-3.

  • 31. K. Bolko, A. Zvonar and M. Ga{perlin, Mixed lipid phase SMEDDS as an innovative approach to enhance resveratrol solubility, Drug Dev. Ind. Pharm. 2013, in press; DOI: 10.3109/03639045. 2012.749888.

  • 32. P. P. Constantinides and J. P. Scalart, Formulation and physical characterization of water-in-oil microemulsions containing long- versus medium-chain glycerides, Int. J. Pharm. 158 (1997) 57-68; DOI: 10.1016/S0378-5173(97)00248-2.

  • 33. D. M. Small, Surface and bulk interactions of lipids and water with a classification of biologically active lipids based on these interactions, Fed. Proc. 29 (1970) 1320-1326.

  • 34. W. C. Pouton, Properties and uses of common formulation lipids, surfactants and cosolvents, in AAPS, Workshop, March 2007.

  • 35. N. H. Shah, M. T. Carvajal, C. I. Patel, M. H. Infeld and A. W. Malick, Self-emulsifying drug delivery systems (SEDDS) with polyglycolized glycerides for improving in vitro dissolution and oral absorption of lipophilic drugs, Int. J. Pharm. 106 (1994) 15-23.

  • 36. Pharmaceutical Excipients, Product Reference Quick Guide, Gattefosse, Version VIII, April 2012; %20GUIDE%204.16.12.pdf; access date December 12, 2012.

  • 37. J. B. Cannon, Strategies to formulate lipid-based drug delivery systems, Am. Pharm. Rev. 14 (2011) 4.

  • 38. A. Zvonar, M. Ga{perlin and J. Kristl, Samo(mikro)emulgirajo~i sistemi - alternativen pristop za izbol{anje biolo{ke uporabnosti lipofilnih u~inkovin = Self(micro)emulsifying systems - alternative approach for improving bioavailability of lipophilic drugs, Farm. Vestn. 59 (2008), 263-268.

  • 39. S. Charman, Self-emulsifying drug delivery systems: formulation and biopharmaceutic evaluation of an investigational lipophilic compound, Pharm. Res. 9 (1992) 87-93; DOI: 10.1023/A: 1018987928936.

  • 40. R. Neslihan Gursoy and S. Benita, Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs, Biomed. Pharmacother. 58 (2004) 173-182; DOI: 10.1016/j. biopha.2004.02.001.

  • 41. E. S. Swenson, W. B. Milisen and W. Curatolo, Intestinal permeability enhancement: efficacy, acute local toxicity and reversibility, J. Pharm. Res. 11 (1994) 1132-1142; DOI: 10.1023/A:1018984731584.

  • 42. T. G. Mason, J. N. Wilking, K. Meleson, C. B. Chang and S. M. Graves, Nanoemulsions: formation, structure and physical properties, J. Phys-Condens. Mat. 18 (2006) 635-666; DOI: 10.1088/ 0953-8984/18/41/R01.

  • 43. H. D. Oh, H. J. Kang, W. D. Kim, J. B. Lee, O. J. Kim, S. C. Yong and G. H. Choi, Comparison of solid self-microemulsifying drug delivery system (solid SMEDDS) prepared with hydrophilic and hydrophobic solid carrier, Int. J. Pharm. 420 (2011) 412-418; DOI: 10.1016/j.ijpharm.2011.

  • 44. K. B. Kang, J. S. Lee and S. K. Chon, Development of self-microemulsifying drug delivery systems (SMEDDS) for oral bioavailability enhancement of simvastatin in beagle dogs, Int. J.Pharm. 274 (2004) 65-73; DOI: 10.1016/j.ijpharm.2003.12.028.

  • 45. S. Nazzal, I. SmalyukhI, O. D. Lavrentovich and M. A. Khan, Preparation and in vitro characterization of a eutectic based semisolid self-nanoemulsified drug delivery system (SNEDDS) of ubiquinone: mechanism and progress of emulsion formation, Int. J. Pharm. 235 (2002) 247-65;DOI: 10.1016/S0378-5173(02)00003-0.

  • 46. C. W. Pouton, Lipid formulations for oral administration of drugs: non-emulsifying, self-emulsifying and self-microemulsifying drug delivery systems, Eur. J. Pharm. Sci. 11 (2000) 93-98; DOI: 10.1016/S0928-0987(00)00167-6.

  • 47. N. Anton and T. F. Vandamme, Nano-emulsions and micro-emulsions: Clarifications of the critical differences, Pharm. Res. 28 (2011) 978-985; DOI: 10.1007/s11095-010-0309-1.

  • 48. P. K. Suresh and S. Sharma, Formulation and in vitro characterization of self-nanoemulsifying drug delivery system of cinnarizine, Int. J. Compr. Pharm. 2011. ISSN 0976-8157.

  • 49. D. Ghai and V. R. Sinha, Nanoemulsions as self-emulsified drug delivery carriers for enhanced permeability of the poorly water-soluble selective b1-adrenoreceptor blocker Talinolol, Nanomed.- Nanotechnol. 8 (2012) 618-626; DOI: 10.1016/j.nano.2011.08.015.

  • 50. S. Tenjarla, Microemulsions: an overview and pharmaceutical applications, Crit. Rev. Ther. Drug. 16 (1999) 461-521.

  • 51. P. V. Chavda, Are SMEDDs and SNEDDs same? A gimmick or pharmaceutically relevant, Mintage J. Pharm. Med. Sci. 1 (2012) 7-10.

  • 52. D. J. McClements and J. Rao, Food-grade nanoemulsions: Formulation, fabrication, properties, performance, biological fate and potential toxicity, Crit. Rev. Food Sci. 51 (2011) 285-330; DOI: 10.1080/10408398.2011.559558.

  • 53. A. Martin, Physical Pharmacy, 4th ed., Lea&Febriger, London 1993, pp.127-128.

  • 54. H. Araya, M. Tomita and M. Hayashi, The novel formulation design of O/W microemulsion for improving the gastrointestinal absorption of poorly water soluble compounds, Int. J. Pharm. 305 (2005) 61-74; DOI: 10.1016/j.ijpharm.2002.08.022.

  • 55. J. M. Lawrence, Microemulsions as drug delivery vehicles, Colloid Interface Sci. 1 (1996) 826-832; DOI: 10.1016/S1359-0294(96)80087-2.

  • 56. P. Solans, J. Nolla and N. Azemar, Nanoemulsions, Curr. Opin. Colloid In. 10 (2005) 102-110; DOI: 10.1016/j.cocis.2005.06.004.

  • 57. M. Antonietti and K. Landfester, Polyreactions in miniemulsions, Prog. Polym. Sci. 27 (2002) 689-757; DOI: 10.1016/S0079-6700(01)00051-X.

  • 58. T. Tadros, P. Izquierdo, J. Esquena and C. Solans, Formation and stability of nanoemulsions, Colloid Interface Sci. 108 (2004) 303-318; DOI: 10.1016/j.cis.2003.10.023.

  • 59. V. Sadtler, M. Rondon-Gonzales, A. Acrement, A. Choplin and E. Marie, PEO-covered nanoparticles by emulsion. Inversion point (EIP) method, Macromol. Rapid Comm. 31 (2010) 998-1002; DOI: 10.1002/marc.200900835.

  • 60. I. Sole, A. Maestro, C. Gonzales, C. Solans and J. M. Gutierrez, Optimization of nano-emulsion preparation by low-energy methods in an ionic surfactant system, Langmuir 22 (2006) 8326-8332; DOI: 10.1021/Ia0613676.

  • 61. P. Shah, D. Bhalodia and P. Shelat, Nanoemulsion: A pharmaceutical review, Syst. Rev. Pharm. 1 (2010) 24-32; DOI: 10.4103/0975-8453.59509.

  • 62. E. Mohajeri and G. D. Noudeh, Effect of temperature on the critical micelle concentration and micellization thermodynamic of nonionic surfactants: polyoxyethylene sorbitan fatty acid esters, E. J. Chem. 9 (2012) 2268-2274; DOI: 10.1155/2012/961739.

Acta Pharmaceutica

The Journal of Croatian Pharmaceutical Society

Journal Information

IMPACT FACTOR 2016: 1.288
5-year IMPACT FACTOR: 1.600

CiteScore 2016: 1.55

SCImago Journal Rank (SJR) 2016: 0.353
Source Normalized Impact per Paper (SNIP) 2016: 0.854


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 44 44 41
PDF Downloads 12 12 11