Solid lipid based nanocarriers: An overview / Nanonosači na bazi čvrstih lipida: Pregled

Open access


In the era of nanoparticulate controlled and site specific drug delivery systems, use of solid lipids to produce first generation lipid nanoparticles, solid lipid nanoparticles (SLN), became a revolutionary approach in the early nineties. The present review is designed to provide an insight into how SLN are finding a niche as promising nanovectors and forms a sound basis to troubleshoot the existing problems associated with traditional systems. Herein, authors had tried to highlight the frontline aspects prominent to SLN. An updated list of lipids, advanced forms of SLN, methods of preparation, characterization parameters, and various routes of administration of SLN are explored in-depth. Stability, toxicity, stealthing, targeting efficiency and other prospectives of SLN are also discussed in detail. The present discussion embodies the potential of SLN, now being looked up by various research groups around the world for their utility in the core areas of pharmaceutical sciences, thereby urging pharmaceutical industries to foster their scale-up.


Pojava nanočestica za kontroliranu i ciljanu isporuku lijekova izrađenih iz čvrstih li­pida (SLN) imala je ranih devedesetih godina revolucionarno značenje. U ovom preglednom radu opisani su SLN sustavi kao korisni nanovektori za isporuku lijekova. Autori ističu prednosti SLN sustava, daju pregled lipida za njihovu izradu, opisuju metode pri­prave, karakterizacijske parametre i različite načine primjene SLN-a. Osim toga, detaljno se raspravlja o njihovoj stabilnosti, toksičnosti te mogućnosti ciljane isporuke. Istaknute su mogućnosti koje pružaju SLNi u području farmaceutskih znanosti i njihova moguća primjena u farmaceutskoj industriji.

  • 1. C. V. Pardeshi, P. V. Rajput, V. S. Belgamwar and A. R. Tekade, Formulation, optimization and evaluation of spray-dried mucoadhesive microspheres as intranasal carriers for valsartan, J. Microencapsul. 29 (2011) 103-114; DOI: 10.3109/02652048.2011.630106.

  • 2. W. Mehnert and K. Mader, Solid lipid nanoparticles: Production, characterization and applications, Adv. Drug. Del. Rev. 47 (2001) 165-196; DOI: 10.1016/S0169-409X(01)00105-3.

  • 3. S. Mukherjee, S. Ray and R. S. Thakur, Solid lipid nanoparticles: A modern formulation approach in drug delivery system, Ind. J. Pharm. Sci. 71 (2009) 349-358.

  • 4. R. H. Müller, K. Mäder and S. Gohla, Solid lipid nanoparticles (SLN) for controlled drug delivery - A review of the state of the art, Eur. J. Pharm. Biopharm. 50 (2000) 161-177.

  • 5. R. H. Müller, M. Radtke and S. A. Wissing, Nanostructured lipid matrices for improved microencapsulation of drugs, Int. J. Pharm. 242 (2002) 121-128; DOI: 10.1016/S0378-5173(02)00180-1.

  • 6. R. H. Müller, M. Radtke and S. A. Wissing, Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations, Adv. Drug Del. Rev. 54 (Suppl. 1) (2002) S131-S155; DOI: 10.1016/S0169-409X(02)00118-7.

  • 7. R. H. Müller, R. D. Petersen, A. Hommoss and J. Pardeike, Nanostructured lipid carriers (NLC) for cosmetic dermal products, Adv. Drug Del. Rev. 59 (2007) 522-530; DOI: 10.1016/j.addr.2007.04.012.

  • 8. J. Y. Fang, C. L. Fang, C. H. Liu and Y. H. Su, Lipid nanoparticles as vehicles for psoralen delivery: Solid lipid nanoparticles (SLN) versus nanostructured lipid carriers, Eur. J. Pharm. Biopharm. 70 (2008) 633-640; DOI: 10.1016/j.ejpb.2008.05.008.

  • 9. E. B. Souto, S. A. Wissing, C. M. Barbosa and R. H. Müller, Development of a controlled release formulation based on SLN and NLC for topical clotrimazole delivery, Int. J. Pharm. 278 (2004) 71-77; DOI: 10.1016/j.ijpharm.2004.02.032.

  • 10. M. Joshi and V. Patravale, Nanostructured lipid carriers (NLC) based gel of celecoxib, Int. J. Pharm. 346 (2008) 124-132; DOI: 10.1016/j.ijpharm.2007.05.060.

  • 11. V. Teeranachaideekul, R. H. Müller and V. B. Junyaprasert, Encapsulation of ascorbyl palmitate in nanostructured lipid carriers (NLC) - Effect of formulation parameters on physicochemical stability, Int. J. Pharm. 340 (2007) 198-206; DOI: 10.1016/j.ijpharm.2007.03.022.

  • 12. S. Doktorovova, J. Araujo, M. L. Garcia, E. Rakovsky and E. B. Souto, Formulating fluticasone propionate in novel PEG-containing nanostructured lipid carriers (PEG-NLC), Colloid Surfacec B. 75 (2010) 538-542; DOI: 10.1016/j.colsurfb.2009.09.033.

  • 13. C. Olbrich, A. Gessner, W. Schroder, O. Kayser and R. H. Müller, Lipid-drug conjugate of the hydrophilic drug diminazine-cytotoxicity testing and mouse serum adsorption, J. Control. Release 96 (2004) 425-435; DOI: 10.1016/j.jconrel.2004.02.024.

  • 14. H. L. Wong, A. M. Rauth, R. Bendayan and X. Y. Wu, In-vivo evaluation of a new polymer-lipid hybrid nanoparticle (PLN) formulation of doxorubicin in a murine solid tumor model, Eur. J. Pharm. Biopharm. 65 (2007) 300-308; DOI: 10.1016/j.ejpb.2006.10.022.

  • 15. H. L. Wong, A. M. Rauth, R. Bendayan and X. Y. Wu, Simultaneous delivery of doxorubicin and GG918 (Elacridar) by new polymer-lipid hybrid nanoparticles (PLN) for enhanced treatment for multidrug-resistant breast cancer, J. Control. Release 116 (2006) 275-284; DOI: 10.1016/j.jconrel.2006.09.007.

  • 16. L. Zhang, J. M. Chan, F. X. Gu, A. Z. Wang, A. F. Radovic-Moreno, F. Alexis, R. Langer and O. C. Farokhzad, Self-assembled lipid-polymer hybrid nanoparticles: A robust drug delivery platform, ACS Nano. 2 (2008) 1696-1702; DOI: 10.1021/nn800275r.

  • 17. Y. Li, H. L. Wong, A. J. Shuhendler, A. M. Rauth and X. Y. Wu, Molecular interactions, internal structure and drug release kinetics of rationally developed polymer-lipid hybrid nanoparticles, J. Control. Release. 128 (2008) 60-70; DOI: 10.1016/j.jconrel.2008.02.014.

  • 18. C. Salvador-Morales, L. Zhang, R. Langer and O. C. Farokhzad, Immunocompatibility properties of polymer-lipid hybrid nanoparticles with heterogeneous surface functional groups, Biomaterials 30 (2009) 2231-2240; DOI: 10.1016/j.biomaterials.2009.01.005.

  • 19. R. Lander, W. Manger, M. Scouloudis, A. Ku, C. Davis and A. Lee, Gaulin homogenization: a mechanistic study, Biotechnol. Prog. 16 (2000) 80-85; DOI: 10.1021/bp990135c.

  • 20. R. H. Müller, S. Benita and B. Bohm, Emulsions and nanosuspensions for the formulation of poorly soluble drugs, Int. J. Pharm. 212 (2001) 143-144.

  • 21. B. Siekmann and K. Westesen, Solid lipid nanoparticles stabilized by tyloxapol, Eur. J. Pharm. Sci. 2 (1994) 117-194; DOI: 10.1016/0928-0987(94)90407-3.

  • 22. H. Bunjes, B. Siekmann and K. Westesen, Emulsions of supercooled melts-a novel drug delivery system, in Submicron Emulsions in Drug Targeting and Delivery, Ed. S. Benita, Hardwood Academic Publishers, Amsterdam 1998, pp. 175-204.

  • 23. V. Venkateswarlu and K. Manjunath, Preparation, characterization and in-vitro release kinetics of clozapine solid lipid nanoparticles, J. Control. Release 95 (2004) 627-638; DOI: 10.1016/j.jconrel.2004.01.005.

  • 24. S. Gande, V. Vobalaboina, M. Kopparam, V. Venkateswarlu and S. Vemula, Preparation, characterization, and in vitro and in vivo evaluation of lovastatin solid lipid nanoparticles, AAPS PharmSciTech. 8 (2007) E1-E9.

  • 25. S. P. Vyas and R. K. Khar, Targeted and Controlled Drug Delivery: A Novel Carrier System, 1st ed., CBS Publishers and Distributors, New Delhi 2002, pp. 346-348.

  • 26. S. Xie, L. Zhu, Z. Dong, X. Wang, Y. Wang, X. Li and W. Zhou, Preparation, characterization and pharmacokinetics of enrofloxacin loaded solid lipid nanoparticles: Influences of fatty acids, Colloid Surface B 83 (2011) 382-387; DOI: 10.1016/j.colsurfb.2010.12.014; DOI: 10.1016/j.colsurfb.2010.12.014.

  • 27. A. V. Heydenreich, R. Westmeier, N. Pedersen, H. S. Poulsen and H. G. Kristensen, Preparation and purification of cationic solid lipid nanospheres-effects on particle size, physical stability and cell toxicity, Int. J. Pharm. 254 (2003) 83-87; DOI: 10.1016/S0378-5173(02)00688-9.

  • 28. N. K. Jain, Advances in Controlled and Novel Drug Delivery, 1st ed., CBS Publishers and Distributors, New Delhi 2001, pp. 418-424.

  • 29. H. Zhou, T. Gu, D. Yang, Z. Jiang and J. Zeng, Griseofulvin solid lipid nanoparticles based on microemulsion technique, Adv. Mater. Res. 197-198 (2011) 47-50; DOI: 10.4028/

  • 30. M. R. Gasco and L. P. Antonelli, Method for producing solid lipid nanospheres having a narrow size distribution, US Pat. 5,250,236, 05 Oct. 1993.

  • 31. S. Morel, M. R. Gasco and R. Cavalli, Incorporation in lipospheres of [D-Trp-6]LHRH, Int. J. Pharm. 105 (1994) RI-R3; DOI: 10.1016/0378-5173(94)90466-9.

  • 32. S. Morel, E. Ugazio, R. Cavalli and M. R. Gasco, Thymopentin in solid lipid nanoparticles, Int. J. Pharm. 132 (1996) 259-261; DOI: 10.1016/0378-5173(95)04388-8.

  • 33. T. Hammady, A. El-Gindy, E. Lejmi, R. S. Dhanikula, P. Moreau and P. Hildgen, Characteristics and properties of nanospheres co-loaded with lipophilic and hydrophilic drug models, Int. J. Pharm. 369 (2009) 185-195; DOI: 10.1016/j.ijpharm.2008.10.034.

  • 34. M. Trotta, F. Debernardi and O. Caputo, Preparation of solid lipid nanoparticles by solvent emulsification-diffusion technique, Int. J. Pharm. 257 (2003) 153-160; DOI: 10.1016/S0378-5173(03)00135-2.

  • 35. L. Battaglia, M. Trotta, M. M. E. G. P. A. Solid lipid nanoparticles formed by solvent-in-eater emulsion-diffusion technique, J. Microencapsul. 5 (2009) 394-402.

  • 36. H. Yuan, L. F. Huang, Y. Z. Du, X. Y. Ying, J. You, F. Q. Hu and S. Zeng, Solid lipid nanoparticles prepared by solvent diffusion method in nanoreactor system, Colloid Surface B 61 (2008) 132-137; DOI: 10.1016/j.colsurfb.2007.07.015.

  • 37. J. Jaiswal, S. K. Gupta and J. Kreuter, Preparation of biodegradable cyclosporine nanoparticles by high-pressure emulsification-solvent evaporation process, J. Control Release 96 (2004) 169-178; DOI: 10.1016/j.jconrel.2004.01.017.

  • 38. B. Sjostrom and B. Bergenstahl, Preparation of submicron drug particles in lecithin stabilized o/w emulsions I. Model studies of the precipitation of cholesteryl acetate, Int. J. Pharm. 88 (1992) 53-62; DOI: 10.1016/0378-5173(92)90303-J.

  • 39. K. Okuyama, M. Abdullah, I. W. Lenggoro and F. Iskandar, Preparation of functional nanostructured particles by spray drying, Adv. Powder Technol. 17 (2006) 587-611; DOI: 10.1163/156855206778917733.

  • 40. K. Okuyama and I. W. Lenggoro, Preparation of nanoparticles via spray route, Chem. Eng. Sci. 58 (2003) 537-547; DOI: 10.1016/S0009-2509(02)00578-X.

  • 41. P. Luo and T. G. Nieh, Synthesis of ultrafine hydroxyapatite particles by spray dry method, Mater. Sci. Eng. C 3 (1995) 75-78; DOI: 10.1016/0928-4931(95)00089-5.

  • 42. C. Freitas and R. H. Müller, Spray-drying of solid lipid nanoparticles (SLNTM), Eur. J. Pharm. Biopharm. 46 (1998) 145-151; DOI: 10.1016/S0939-6411(97)00172-0.

  • 43. P. Tewa-Tange, S. Briancon and H. Fessi, Preparation of redispersible dry nanocapsules by means of spray-drying: Development and characterisation, Eur. J. Pharm. Sci. 30 (2007) 124-135; DOI: 10.1016/j.ejps.2006.10.006.

  • 44. P. M. Gosselin, R. Thibert, M. Preda and J. N. McMullen, Polymorphic properties of micronized carbamazepine produced by RESS, Int. J. Pharm. 252 (2003) 225-233; DOI: 10.1016/S0378-5173(02)00649-X.

  • 45. A. J. Thote and R. B. Gupta, Formation of nanoparticles of a hydrophilic drug using supercritical carbon dioxide and microencapsulation for sustained release, Nanomedicine 1 (2005) 85-90; DOI: 10.1016/j.nano.2004.12.001.

  • 46. J. Vandervoort and A. Ludwig, Preparation and evaluation of drug loaded gelatin nanoparticles for topical ophthalmic use, Eur. J. Pharm. Biopharm. 57 (2004) 251-261; DOI: 10.1016/S0939-6411(03)00187-5.

  • 47. R. Paliwal, S. Rai, B. Vaidya, K. Khatri, A. K. Goyal, N. Mishra, A. Mehta and S. P. Vyas, Effect of lipid core material on characteristics of solid lipid nanoparticles designed for oral lymphatic delivery, Nanomedicine 5 (2009) 184-191; DOI: 10.1016/j.nano.2008.08.003.

  • 48. C. Olbrich and R. H. Müller, Enzymatic degradation of SLN - Effect of surfactant and surfactant mixtures, Int. J. Pharm. 180 (1999) 31-39; DOI: 10.1016/S0378-5173(98)00404-9.

  • 49. C. C. Chen, T. H. Tsai, Z. R. Huang and J. Y. Fang, Effects of lipophilic emulsifiers on the oral administration of lovastatin from nanostructured lipid carriers: Physicochemical characterization and pharmacokinetics, Eur. J. Pharm. Biopharm. 74 (2010) 474-482; DOI: 10.1016/j.ejpb.2009.12.008.

  • 50. S. Y. Xie, S. L. Wang, B. K. Zhao, C. Han, M. Wang and W. Z. Zhou, Effect of PLGA as a polymeric emulsifier on preparation of hydrophilic protein-loaded solid lipid nanoparticles, Colloid Surface B 67 (2008) 199-204; DOI: 10.1016/j.colsurfb.2008.08.018.

  • 51. R. Cavalli, O. Caputo, M. E. Carlotti, M. Trotta, C. Scarnecchia and M. R. Gasco, Sterilization and freeze-drying of drug-free and drug-loaded solid lipid nanoparticles, Int. J. Pharm. 148 (1997) 47-54; DOI: 10.1016/S0378-5173(96)04822-3.

  • 52. C. Schwarz, W. Mehnert, J. S. Lucks and R. H. Müller, Solid lipid nanoparticles (SLN) for controlled drug delivery. I. Production, characterisation and sterilization, J. Control Release 30 (1994) 83-96.

  • 53. W. Abdelwahed, G. Degobert, S. Stainmesse and H. Fessi, Freeze-drying of nanoparticles: Formulation, process and storage considerations, Adv. Drug Del. Rev. 58 (2006) 1688-1713; DOI: 10.1016/j.addr.2006.09.017.

  • 54. S. D. Allison, Md. C. Molina and T. J. Anchordoquy, Stabilization of lipid/DNA complexes during the freezing step of the lyophilization process: the particle isolation hypothesis, Biochim. Biophys. Acta. 1468 (2000) 127-138; DOI: 10.1016/S0005-2736(00)00251-0.

  • 55. J. H. Crowe, J. F. Carpenter and L. M. Crowe, The role of vitrification in anhydrobiosis, Annu. Rev. Physiol. 60 (1998) 73-103; DOI: 10.1146/annurev.physiol.60.1.73.

  • 56. K. Westesen, B. Siekmann and M. H. J. Koch, Investigations on the physical state of lipid nanoparticles by synchrotron radiation X-ray diffraction, Int. J. Pharm. 93 (1993) 189-199; DOI: 10.1016/0378-5173(93)90177-H.

  • 57. H. Bunjes, K. Westesen and M. H. J. Koch, Crystallization tendencies and polymorphic transitions in triglyceride nanoparticles, Int. J. Pharm. 129 (1996) 159-173; DOI: 10.1016/0378-5173(95)04286-5.

  • 58. A. Z. Muhlen, C. Schwarz and W. Mehnert, Solid lipid nanoparticles (SLN) for controlled drug delivery - Drug release and release mechanism, Eur. J. Pharm. Biopharm. 45 (1998) 149-155.

  • 59. S. Chakraborty, D. Shukla, B. Mishra and S. Singh, Lipid - An emerging platform for oral delivery of drugs with poor bioavailability, Eur. J. Pharm. Biopharm. 73 (2009) 1-15; DOI: 10.1016/j.ejpb.2009.06.001.

  • 60. A. Radomska-Soukharev, Stability of lipid excipients in solid lipid nanoparticles, Adv. Drug Del. Rev. 59 (2007) 411-418; DOI: 10.1016/j.addr.2007.04.004.

  • 61. B. Heurtault, P. Saulnier, B. Pech, J.-E. Proust and J. P. Benoit, Physico-chemical stability of colloidal lipid particles, Biomaterials 24 (2003) 4283-4300; DOI: 10.1016/S0142-9612(03)00331-4.

  • 62. B. Siekmann and K. Westesen, Thermoanalysis of recrystallization process of melt homogenised glyceride nanoparticles, Colloid Surface B 3 (1994) 159-175.

  • 63. C. Freitas and R. H. Müller, Effect of light and temperature on zeta potential and physical stability of solid lipid nanoparticle (SLNTM) dispersions, Int. J. Pharm. 168 (1998) 221-229.

  • 64. C. Freitas and R. H. Müller, Stability determination of solid lipid nanoparticles (SLN) in aqueous dispersion after addition of electrolyte, J. Microencapsul. 16 (1999) 59-71; DOI: 10.1080/026520499289310.

  • 65. C. Freitas and R. H. Müller, Correlation between long term stability of solid lipid nanoparticles (SLNTM) and crystallinity of lipid phase, Eur. J. Pharm. Biopharm. 47 (1999) 125-132.

  • 66. K. Westesen and B. Siekmann, Investigation of the gel formation of phospholipid-stabilized solid lipid nanoparticles, Int. J. Pharm. 151 (1997) 35-45; DOI: 10.1016/S0378-5173(97)04890-4.

  • 67. R. H. Müller and S. Heinemann, Fat emulsions for parenteral nutrition. III. Lipofundin MCT/LCT regimens for total parenteral nutrition (TPN) with low electrolyte load, Int. J. Pharm. 101 (1994) 175-189; DOI: 10.1016/0378-5173(94)90213-5.

  • 68. C. Freitas, J. Lucks and R. H. Müller, Effect of storage conditions on long-term stability of »solid lipid nanoparticles« (SLN) in aqueous dispersion, Eur. J. Pharm. Sci. 2 (1994) 117-194; DOI: 10.1016/0928-0987(94)90411-1.

  • 69. B. Borgstrom, Importance of phospholipids, pancreatic phospholipase A2, and fatty acid for the digestion of dietary fat: in vitro experiments with the porcine enzymes, Gastroenterology 78 (1980) 954-962.

  • 70. R. O. Scow and T. Olivecrona, Effect of albumin on products formed from chylomicron triacylglycerol by lipoprotein lipase in vitro, Biochim. Biophys. Acta. 487 (1977) 472-486; DOI: 10.1016/0005-2760(77)90217-X.

  • 71. R. Pandey, S. Sharma and G. K. Khuller, Oral solid lipid nanoparticle-based antitubercular chemotherapy, Tuberculosis 85 (2005) 415-420, DOI: 10.1016/

  • 72. N. Zhang, Q. Ping, G. Huang, W. Xua, Y. Cheng and X. Han, Lectin-modified solid lipid nanoparticles as carriers for oral administration of insulin, Int. J. Pharm. 327 (2006) 153-159; DOI: 10.1016/j.ijpharm.2006.07.026.

  • 73. M. D. Joshi and R. H. Müller, Lipid nanoparticles for parenteral delivery of actives, Eur. J. Pharm. Biopharm. 71 (2009) 161-172; DOI: 10.1016/j.ejpb.2008.09.003.

  • 74. S. A. Wissing, O. Kayser and R. H. Müller, Solid lipid nanoparticles for parenteral drug delivery, Adv. Drug Del. Rev. 56 (2004) 1257-1272; DOI: 10.1016/j.addr.2003.12.002.

  • 75. A. Fundarò, O, R. Cavalli, A. Bargoni, D. Vighetto, G. P. Zara and M. R. Gasco, Non-stealth and stealth solid lipid nanoparticles (SLN) carrying doxorubicin: pharmacokinetics and tissue Distribution after i.v. administration to rats, Pharmacol. Res. 42 (2000) 337-343; DOI: 10.1006/phrs.2000.0695.

  • 76. S. C. Yang, L. F. Lu, Y. Cai, J. B. Zhu, B. W. Liang and C. Z. Yanga, Body distribution in mice of intravenously injected camptothecin solid lipid nanoparticles and targeting effect on brain, J. Control. Release 59 (1999) 299-307; DOI: 10.1016/S0168-3659(99)00007-3.

  • 77. L. H. Reddy, R. K. Sharma, K. Chuttani, A. K. Mishra and R. S. R. Murthy, Influence of administration route on tumor uptake and biodistribution of etoposide loaded solid lipid nanoparticles in Dalton’s lymphoma tumor bearing mice, J. Control. Release 105 (2005) 185-198; DOI: 10.1016/j.jconrel.2005.02.028.

  • 78. M. Schafer-Korting, W. Mehnert and H. C. Korting, Lipid nanoparticles for improved topical application of drugs for skin diseases, Adv. Drug Del. Rev. 59 (2007) 427-443; DOI: 10.1016/j.addr.2007.04.006.

  • 79. V. Jenning, M. Schafer-Korting and S. Gohla, Vitamin A-loaded solid lipid nanoparticles for topical use: drug release properties, J. Control. Release 66 (2000) 115-126; DOI: 10.1016/S0168-3659(99)00007-3.

  • 80. P. V. Pople and K. K. Singh, Development and evaluation of topical formulation containing solid lipid nanoparticles of vitamin A, AAPS PharmSciTech. 4 (2006) E1-E7; DOI: 10.1208/pt070491.

  • 81. S. K. Jain, M. K. Chourasia, R. Masuriha, V. Soni, A. Jain, Nitin K. Jain and Y. Gupta, Solid lipid nanoparticles bearing flurbiprofen for transdermal delivery, Drug Del. 12 (2005) 207-215; DOI: 10.1080/10717540590952591.

  • 82. A. J. Almeida and E. Souto, Solid lipid nanoparticles as a drug delivery system for peptides and proteins, Ad.v Drug Del. Rev. 59 (2007) 478-490; DOI: 10.1016/j.addr.2007.04.007.

  • 83. J. Liu, T. Gong, H. Fu, C. Wang, X. Wang, Q. Chena, Q. Zhang, Q. Hea and Z. Zhang, Solid lipid nanoparticles for pulmonary delivery of insulin, Int. J. Pharm. 356 (2008) 333-344; DOI: 10.1016/j.ijpharm.2008.01.008.

  • 84. J. Araujo, E. Gonzalez, M. A. Egea, M. L. Garcia and E. B. Souto, Nanomedicines for ocular NSAIDs: safety on drug delivery, Nanomedicine 5 (2009) 394-401; DOI: 10.1016/j.nano.2009.02.003.

  • 85. M. I. Alam, S. Beg, A. Samad, S. Baboota, K. Kohli, J. Ali, A. Ahuja and M. Akbar, Strategy for effective brain drug delivery, Eur. J. Pharm. Sci. 40 (2010) 385-403; DOI: 10.1016/j.ejps.2010.05.003.

  • 86. I. P. Kaur, R. Bhandari, S. Bhandari and V. Kakkar, Potential of solid lipid nanoparticles in brain targeting, J. Control. Release 127 (2008) 97-100; DOI: 10.1016/j.jconrel.2007.12.018.

  • 87. A. Mistry, S. Stolnik and L. Illum, Nanoparticles for direct nose-to-brain delivery of drugs, Int. J. Pharm. 379 (2009) 146-157; DOI: 10.1016/j.ijpharm.2009.06.019.

  • 88. I. Brasnjevic, H. W. M. Steinbusch, C. Schmitz and P. Martinez-Martinez, Delivery of peptide and protein drugs over the blood-brain barrier, Prog. Neurobiol. 87 (2009) 212-251; DOI: 10.1016/j.pneurobio.2008.12.002.

  • 89. F. Chellat, Y. Merhi, A. Moreau and L. H. Yahia, Therapeutic potential of nanoparticulate systems for macrophage targeting, Biomaterials 26 (2005) 7260-7275; DOI: 10.1016/j.biomaterials.2005.05.044.

  • 90. H. Chen, X. Chang, D. Du, W. Liu, J. Liu, T. Weng, Y. Yang, H. Xu and X. Yang, Podophyllotoxin-loaded solid lipid nanoparticles for epidermal targeting, J. Control. Release 110 (2006) 296-306; DOI: 10.1016/j.jconrel.2005.09.052.

  • 91. R. H. Müller, S. Maaben, H. Weyhers, F. Specht and J. S. Lucks, Cytotoxicity of magnetite-loaded polylactide, polylactide/glycolide particles and solid lipid nanoparticles, Int. J. Pharm. 138 (1996) 85-94; DOI: 10.1016/0378-5173(96)04539-5.

  • 92. D. M. Radolfi, P. D. Marcato, R. A. Silva, G. Z. Justo and N. Duran, In vitro cytotoxicity assay of solid lipid nanoparticles in epithelial and dermal cells, J. Phys. Conf. Ser. 304 (2011) 1-4; DOI: 10.1088/1742-6596/304/1/012032.

  • 93. H. Yuan, J. Miao, Y. Z. Du, J. You, F. Q. Hu and S. Zeng, Cellular uptake of solid lipid nanoparticles and cytotoxicity of encapsulated paclitaxel in A549 cancer cells, Int. J. Pharm. 348 (2008) 137-145; DOI: 10.1016/j.ijpharm.2007.07.012.

  • 94. J. C. Olivier, Drug transport to brain with targeted nanoparticles, NeuroRx. 1 ( 2005) 108-119; DOI: 10.1602/neurorx.2.1.108.

  • 95. T. R. Pisanic II, J. D. Blackwell, V. I. Shubayev, R. R. Fiñones and S. Jin, Nanotoxicity of iron oxide nanoparticle internalization in growing neurons, Biomaterials 28 (2007) 2572-2581; DOI: 10.1016/j.biomaterials.2007.01.043.

  • 96. H. C. Fischer, W. C. Chan, Nanotoxicity: the growing need for in vivo study, Curr. Opin. Biotechnol. 18 (2007) 565-571; DOI: 10.1016/j.copbio.2007.11.008.

  • 97. Y. L. Hu and J. Q. Gao, Potential neurotoxicity of nanoparticles, Int. J. Pharm. 394 (2010) 115-121; DOI: 10.1016/j.ijpharm.2010.04.026.

  • 98. K. Jores, W. Mehnert, M. Drechsler, H. Bunjes, C. Johann and K. Mäder, Investigations on the structure of solid lipid nanoparticles (SLN) and oil-loaded solid lipid nanoparticles by photon correlation spectroscopy, field-flow fractionation and transmission electron microscopy, J. Control. Release 95 (2004) 217-227; DOI: 10.1016/j.jconrel.2003.11.012.

  • 99. S. Chakraborty, B. Sahoo, I. Teraoka and R. A. Gross, Solution properties of starch nanoparticles in water and DMSO as studied by dynamic light scattering, Carbohydr Polym. 60 (2005) 475-481; DOI: 10.1016/j.carbpol.2005.03.011.

  • 100. B. G. Zanetti-Ramos, M. B. Fritzen-Garcia, C. S. de Oliveira, A. A. Pasa, V. Soldi, R. Borsali and T. B. Creczynski-Pasa, Dynamic light scattering and atomic force microscopy techniques for size determination of polyurethane nanoparticles, Mater. Sci. Eng. C. Mater. Biol. App. 29 (2009) 638-640; DOI: 10.1016/j.msec.2008.10.040.

  • 101. L. Dulog and T. Schauer, Field flow fractionation for particle size determination, Prog. Org. Coat. 28 (1996) 25-31; DOI: 10.1016/0300-9440(95)00584-6.

  • 102. A. S. Dukhin, P. J. Goetz, X. Fang and P. Somasundaran, Monitoring nanoparticles in the presence of larger particles in liquids using acoustics and electron microscopy, J. Colloid Inter. Sci. 342 (2010) 18-25; DOI: 10.1016/j.jcis.2009.07.001.

  • 103. V. Jenning, K. Mäder and S. H. Gohla, Solid lipid nanoparticles (SLN™) based on binary mixtures of liquid and solid lipids: 1H-NMR study, Int. J. Pharm. 205 (2000) 15-21; DOI: 10.1016/S0378-5173(00)00462-2.

  • 104. A. Dubes, H. Parrot-Lopez, W. Abdelwahed, G. Degobert, H. Fessi, P. Shahgaldian and A. W. Coleman, Scanning electron microscopy and atomic force microscopy imaging of solid lipid nanoparticles derived from amphiphilic cyclodextrins, Eur. J. Pharm. Biopharm. 55 (2003) 279-282; DOI: 10.1016/S0939-6411(03)00020-1.

  • 105. M. Albrecht, V. Janke, S. Sievers, U. Siegner, D. Schulerb and U. Heyen, Scanning force microscopy study of biogenic nanoparticles for medical applications, J. Magn. Magn. Mater. 290-291 (2005) 269-271; DOI: 10.1016/j.jmmm.2004.11.206.

  • 106. N. Škalko, J. Bouwstra, F. Spies, M. Stuart, P. M. Frederik and G. Gregoriadis, Morphological observations on liposomes bearing covalently bound protein: Studies with freeze-fracture and cryo electron microscopy and small angle X-ray scattering techniques, Biochim. Biophys. Acta 1370 (1998) 151-160; DOI: 10.1016/S0005-2736(97)00256-3.

  • 107. K. Fowler, L. A. Bottomley and H. Schreier, Surface topography of phospholipid bilayer and vesicles (liposomes) by scanning tunnelling microscopy (STM), J. Control. Release 22 (1992) 283-292; DOI: 10.1016/0168-3659(92)90103-X.

  • 108. O. Robach, C. Quiros, S. M. Valvidares, C. J. Walker and S. Ferrer, Structure and Pt magnetism of FePt nanoparticles investigated with X-ray diffraction, J. Magn. Magn. Mater. 264 (2003) 202-208; DOI: 10.1016/S0304-8853(03)00205-1.

  • 109. M. A. Schubert, B. C. Schicke and C. C. Muller-Goymann, Thermal analysis of the crystallization and melting behaviour of lipid matrices and lipid nanoparticles containing high amounts of lecithin, Int. J. Pharm. 298 (2005) 242-254; DOI: 10.1016/j.ijpharm.2005.04.014.

  • 110. S. A. Wissing and R. H. Müller, Solid lipid nanoparticles as carrier for sunscreens: in vitro release and in vivo skin penetration, J. Control. Release 81 (2002) 225-233; DOI: 10.1016/S0168-3659(02)00056-1.

  • 111. C. Song and S. Liu, A new healthy sunscreen system for human: Solid lipid nannoparticles as carrier for 3,4,5-trimethoxybenzoylchitin and the improvement by adding vitamin E, Int. J. Biol. Macromol. 36 (2005) 116-119; DOI: 10.1016/j.ijbiomac.2005.05.003.

  • 112. J. Pardeike, A. Hommoss and R. H. Müller, Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products, Int. J. Pharm. 366 (2009) 170-184; DOI: 10.1016/j.ijpharm.2008.10.003.

  • 113. S. A. Wissing and R. H. Müller, Cosmetic applications for solid lipid nanoparticles (SLN), Int. J. Pharm. 254 (2003) 65-68; DOI: 10.1016/S0378-5173(02)00684-1.

  • 114. K. A. Shah, A. A. Date, M. D. Joshi and V. B. Patravale, Solid lipid nanoparticles (SLN) of tretinoin: Potential in topical delivery, Int. J. Pharm. 345 (2007) 163-171; DOI: 10.1016/j.ijpharm.2007.05.061.

  • 115. J. Liu, W. Hu, H. Chen, Q. Ni, H. Xu and X. Yang, Isotretinoin-loaded solid lipid nanoparticles with skin targeting for topical delivery, Int. J. Pharm. 328 (2007) 191-195; DOI: 10.1016/j.ijpharm.2006.08.007.

  • 116. M. S. Korting, W. Mehnert and H. C. Korting, Lipid nanoparticles for improved topical application of drugs for skin diseases, Adv. Drug Del. Rev. 59 (2007) 427-443; DOI: 10.1016/j.addr.2007.04.006.

  • 117. A. del Pozo-Rodrigueza, D. Delgadoa, M. A. Solinis, J. L. Pedraza, E. Echevarria, J. M. Rodriguez and A. R. Gascona, Solid lipid nanoparticles as potential tools for gene therapy: In vivo protein expression after intravenous administration, Int. J. Pharm. 385 (2010) 157-162; DOI: 10.1016/j.ijpharm.2009.10.020.

  • 118. S. H. Choi, S. E. Jin, M. K. Lee, S. J. Lim, J. S. Park, B. G. Kim, W. S. Ahn and C. K. Kim, Novel cationic solid lipid nanoparticles enhanced p53 gene transfer to lung cancer cells, Eur. J. Pharm. Biopharm. 68 (2008) 545-554; DOI: 10.1016/j.ejpb.2007.07.011.

  • 119. N. Pedersen, S. Hansen, A. V. Heydenreich, H. G. Kristensen and H. S. Poulsen, Solid lipid nanoparticles can effectively bind DNA, streptavidin and biotinylated ligands, Eur. J. Pharm. Biopharm. 62 (2006) 155-162; DOI: 10.1016/j.ejpb.2005.09.003.

  • 120. H. L. Wong, R. Bendayan, A. M. Rauth, Y. Li and X. Y. Wu, Chemotherapy with anticancer drugs encapsulated in solid lipid nanoparticles, Adv. Drug Del. Rev. 59 (2007) 491-504; DOI: 10.1016/j.addr.2007.04.008.

  • 121. H. L. Wong, R. Bendayan, A. M. Rauth and X. Y. Wu, Simultaneous delivery of doxorubicin and GG918 (Elacridar) by new Polymer-Lipid Hybrid Nanoparticles (PLN) for enhanced treatment of multidrug-resistant breast cancer, J. Control. Release 116 (2006) 275-284; DOI: 10.1016/j.jconrel.2006.09.007.

  • 122. R. K. Subedi, K. W. Kang and H. K. Choi, Preparation and characterization of solid lipid nanoparticles loaded with doxorubicin, Eur. J. Pharm. Sci. 37 (2009) 508-513; DOI: 10.1016/j.ejps.2009.04.008.

  • 123. B. Lu, S. B. Xiong, H. Yang, X. D. Yin and R. B. Chao, Solid lipid nanoparticles of mitoxantrone for local injection against breast cancer and its lymph node metastases, Eur. J. Pharm. Sci. 28 (2006) 86-95; DOI: 10.1016/j.ejps.2006.01.001.

  • 124. N. Csaba, M. Garcia-Fuentes and M. J. Alonso, Nanoparticles for nasal vaccination, Adv. Drug Del. Rev. 61 (2009) 140-157; DOI: 10.1016/j.addr.2008.09.005.

  • 125. S. M. Moghimi and J. Szebeni, Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties, Prog. Lipid Res. 42 (2003) 463-478; DOI: 10.1016/S0163-7827(03)00033-X.

  • 126. Y. Wang and W. Wu, In situ evading of phagocytic uptake of stealth solid lipid nanoparticles by mouse peritoneal macrophages, Drug Deliv. 3 (2006) 189-192; DOI: 10.1080/10717540-500-315330.

  • 127. M. R. Gasco, Lipid nanoparticles: perspectives and challenges, Adv. Drug Del. Rev. 59 (2007) 377-378; DOI: 10.1016/j.addr.2007.05.004.

  • 128. A. J. Domb, Long acting injectable oxytetracycline-liposphere formulations, Int. J. Pharm. 124 (1995) 271-278; DOI: 10.1016/0378-5173(95)00098-4.

  • 129. C. Schwarz and W. Mehnert, Freeze-drying of drug-free and drug-loaded solid lipid nanoparticles (SLN), Int. J. Pharm. 157 (1997) 171-179; DOI: 10.1016/S0378-5173(97)00222-6.

  • 130. K. Westesen, H. Bunjes and M. H. J. Koch, Physicochemical characterization of lipid nanoparticles and evaluation of their drug loading capacity and sustained release potential, J. Control. Release 48 (1997) 223-236; DOI: 10.1016/S0168-3659(97)00046-1.

  • 131. K. Westesen, B. Siekmann and M. H. J. Koch, Investigations on the physical state of lipid nanoparticles by synchrotron radiation X-ray diffraction, Int. J. Pharm. 93 (1993) 189-199; DOI: 10.1016/0378-5173(93)90177-H.

  • 132. A. J. Almeida, S. Runge and R. H. Müller, Peptide-loaded solid lipid nanoparticles (SLN): influence of production parameters, Int. J. Pharm. 149 (1997) 255-265; DOI: 10.1016/S0378-5173(97)04885-0.

  • 133. R. Cavalli, E. Peira, O. Caputo and M. R. Gasco, Solid lipid nanoparticles as carriers of hydrocortisone and progesterone complexes with a-cyclodextrins, Int. J. Pharm. 182 (1999) 59-69.

  • 134. H. Ali, A. B. Shirode, P. W. Sylvester and S. Nazzal, Preparation and in vitro antiproliferative effect of tocotrienol loaded lipid nanoparticles, Colloid Surface A 353 (2010) 43-51; DOI: 10.1016/j.colsurfa.2009.10.020.

  • 135. R. Cavalli, S. Morel, M. R. Gasco, P. Chetoni and M. F. Saettone, Preparation and evaluation in vitro of colloidal lipospheres containing pilocarpine as ion pair, Int. J. Pharm. 117 (1995) 243-246; DOI: 10.1016/0378-5173(94)00339-7.

  • 136. S. Morel, E. Terreno, E. Ugazio, S. Aime and M. R. Gasco, NMR relaxometric investigations of solid lipid nanoparticles (SLN) containing gadolinium(III) complexes, Eur. J. Pharm. Biopharm. 45 (1998) 157-163; DOI: 10.1016/S0939-6411(97)00107-0.

  • 137. M. R. Gasco, R. Cavalli and M. E. Carlotti, Timolol in lipospheres, Pharmazie 47 (1992) 119-121.

  • 138. A. A. Attama and C. C. Müller-Goymann, Effect of beeswax modification on the lipid matrix and solid lipid nanoparticle crystallinity, Colloid Surface A 315 (2008) 189-195; DOI: 10.1016/j.colsurfa.2007.07.035.

  • 139. S. Kheradmandia, E. Vasheghani-Farahani, M. Nosrati and F. Atyabi, Preparation and characterization of ketoprofen-loaded solid lipid nanoparticles made from beeswax and carnauba wax, Nanomedicine 6 (2010) 753-759; DOI: 10.1016/j.nano.2010.06.003.

  • 140. B. D. Kim, K. Na and H. K. Choi, Preparation and characterization of solid lipid nanoparticles (SLN) made of cacao butter and curdlan, Eur. J. Pharm. Sci. 24 (2005) 199-205; DOI: 10.1016/j.ejps.2004.10.008.

  • 141. C. Bocca, O. Caputo, R. Cavalli, L. Gabrial, A. Miglietta and M. R. Gasco, Phagocytic uptake of fluorescent stealth and non-stealth solid lipid nanoparticles, Int. J. Pharm. 175 (1998) 185-193; DOI: 10.1016/S0378-5173(98)00282-8.

  • 142. T. M. Goppert and R. H. Müller, Protein adsorption patterns on poloxamer- and poloxamine-stabilized solid lipid nanoparticles (SLN), Eur. J. Pharm. Biopharm. 60 (2005) 361-372; DOI: 10.1016/j.ejpb.2005.02.006.

  • 143. H. M. Redhead, S. S. Davis and L. Illum, Drug delivery in poly(lactide-co-glycolide) nanoparticles surface modified with poloxamer 407 and poloxamine 908: in vitro characterisation and in vivo evaluation, J. Control. Release 70 (2001) 353-363.

  • 144. C. Olbrich, O. Kayser and R. H. Müller, Lipase degradation of Dynasan 114 and 116 solid lipid nanoparticles (SLN) - effect of surfactants, storage time and crystallinity, Int. J. Pharm. 237 (2002) 119-128; DOI: 10.1016/S0378-5173(02)00035-2.

  • 145. C. C. Shen, W. L. Tseng and M. M. Hsieh, Selective enrichment of aminothiols using polysorbate 20-capped gold nanoparticles followed by capillary electrophoresis with laser-induced fluorescence, J. Chromatogr. A 1216 (2009) 288-293; DOI: 10.1016/j.chroma.2008.11.044.

  • 146. L. D. Marzio, C. Marianecci, M. Petrone, F. Renaldi and M. Carafa, Novel pH-sensitive non-ionic surfactant vesicles: comparison between Tween 21 and Tween 20, Colloid Surface B 82 (2011) 18-24; DOI: 10.1016/j.colsurfb.2010.08.004.

  • 147. L. H. Reddy, K. Vivek, N. Bakshi and R. S. R. Murthy, Tamoxifen citrate loaded solid lipid nanoparticles (SLN™): Preparation, characterization, in vitro drug release, and pharmacokinetic evaluation, Pharm. Dev. Technol. 11 (2006) 167-177; 2006, DOI: 10.1080/10837450600561265.

  • 148. F. Q. Hu, H. Yuan, H. H. Zhang and M. Fang, Preparation of solid lipid nanoparticles with clobetasol propionate by a novel solvent diffusion method in aqueous system and physicochemical characterization, Int. J. Pharm. 239 (2002) 121-128; DOI: 10.1016/S0378-5173(02)00081-9.

Acta Pharmaceutica

The Journal of Croatian Pharmaceutical Society

Journal Information

IMPACT FACTOR 2016: 1.288
5-year IMPACT FACTOR: 1.600

CiteScore 2016: 1.55

SCImago Journal Rank (SJR) 2016: 0.353
Source Normalized Impact per Paper (SNIP) 2016: 0.854


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 35 35 28
PDF Downloads 11 11 10