Interfacial rheology: An overview of measuring techniques and its role in dispersions and electrospinning

Open access

Interfacial rheology: An overview of measuring techniques and its role in dispersions and electrospinning

Interfacial rheological properties have yet to be thoroughly explored. Only recently, methods have been introduced that provide sufficient sensitivity to reliably determine viscoelastic interfacial properties. In general, interfacial rheology describes the relationship between the deformation of an interface and the stresses exerted on it. Due to the variety in deformations of the interfacial layer (shear and expansions or compressions), the field of interfacial rheology is divided into the subcategories of shear and dilatational rheology. While shear rheology is primarily linked to the long-term stability of dispersions, dilatational rheology provides information regarding short-term stability. Interfacial rheological characteristics become relevant in systems with large interfacial areas, such as emulsions and foams, and in processes that lead to a large increase in the interfacial area, such as electrospinning of nanofibers.

Medfazna reologija: Pregled merilnih tehnik in njen pomen v disperzijah in elekrostatskemu sukanju

Medfazne reološke lastnosti so še dokaj neraziskane. Šele pred kratkim so razvili metode, s katerimi je mogoče z zadostno občutljivostjo in natančnostjo določiti viskoelastične lastnosti medfaze. Medfazna reologija opisuje odnos med deformacijo medfaze in silo, ki to deformacijo povzroči. Zaradi različnih deformacij medfazne plasti (strig in raztezanje, oziroma krčenje) se tudi medfazna reologija deli na strižno in dilatacijsko. Strižne reološke lastnosti medfaze se odražajo v dolgotrajni stabilnosti disperzij, medtem ko sedilatacijske predvsem v kratkotrajni stabilnosti. Poznavanje medfaznih reoloških lastnosti je pomembno v sistemih z velikimi medfaznimi površinami, kot so emulzije in pene ter pri procesih, kjer pride do velikega povečanja medfazne površine, kot je elektrostatsko sukanje nanovlaken.

References
  • J. M. Rodríguez Patino, C. Carrera Sánchez and M. R. Rodríguez Niño, Implications of interfacial characteristics of food foaming agents, Adv. Colloid Interfac. 140 (2008) 95-113; DOI: 10.1016/j.cis.2007.12.007.

  • R. Rošic, J. Pelipenko, M. Bešter-Rogač, S. Baumgartner and J. Kristl, Rheology of polymer solutions in predicting nanofiber formation by electrospinning, Eur. Polym. J. (2012); DOI: 10.1016/j.eurpolymj.2012.05.001.

  • R. Miller, J. K. Ferri, A. Javadi, J. Krgel, N. Mucic and R. Wüstneck, Rheology of interfacial layers, Colloid Polym. Sci. 288 (2010) 937-950; DOI: 10.1007/s00396-010-2227-5.

  • J. Kocevar Nared, J. Kristl and J. Smid Korbar, Comparative rheological investigation of crude gastric mucin and natural gastric mucus, Biomaterials 18 (1997) 677-681; DOI: 10.1016/S0142-9612(96)00180-9.

  • M. Gasperlin, J. Kristl and J. Smid Korbar, Viscoelastic behaviour of semi-solid w/o emulsion systems, STP Pharma Sci. 7 (1997) 158-163.

  • M. Gasperlin, L. Tusar and M. Tusar, Viscosity prediction of lipophilic semisolid emulsion systems by neural network modeling, Int. J. Pharm. 196 (2000) 37-50; DOI: 10.1016/S0378-5173(99)00443-3.

  • Z. Khattari, Y. Ruschel, H. Z. Wen, A. Fischer and T. M. Fischer, Compactification of a myelin mimetic Langmuir monolayer upon adsorption and unfolding of myelin basic protein, J. Phys. Chem. 109 (2005) 3402-3407; DOI: 10.1021/jp045493z.

  • B. S. Murray, Rheological properties of protein films, Curr. Opin. Colloid In. 16 (2011) 27-35; DOI: 10.1016/j.cocis.2010.06.005.

  • R. M. Prokop and A. W. Neumann, Measurement of the interfacial properties of lung surfactant, Curr. Opin. Colloid In. 1 (1996) 677-681; DOI: 10.1016/S1359-0294(96)80108-7.

  • R. Wüstneck, J. Perez-Gil, N. Wüstneck, A. Cruz, V. B. Fainerman and U. Pison, Interfacial properties of pulmonary surfactant layers, Adv. Colloid Interfac. 117 (2005) 33-58; DOI: 10.1016/j.cis.2005.05.001.

  • J. Krägel and S. R. Derkatch, Interfacial shear rheology, Curr. Opin. Colloid In. 15 (2010) 246-255; DOI: 10.1016/j.cocis.2010.02.001.

  • T. G. Mezger, The Rheology Handbook, 2nd Edition, Vincentz Network, Hannover 2006, pp. 16-26.

  • K. Masschaele, S. Vandebril, J. Vermant and B. Madivala, Rheology-Vol.1, EOLSS 2009, pp. 414-439.

  • T. F. Tadros, Applied Surfactants; Principles and Applications, Willey-VCH, Weinheim 2005, pp. 162-168.

  • R. Miller and L. Liggieri, Interfacial Rheology, Vol. 1, Brill, Boston 2009, pp. 1-178.

  • A. Zupančič Valant, Uvod v reologijo, Univerza v Ljubljani, Fakulteta za kemijo in kemijsko tehnologijo, Ljubljana 2007, pp. 29-48.

  • R. J. Crawford, Plastics Engineering, 3rd edition, Elsevier grad, United Kingdom 1998, pp. 84-95.

  • A. Torcello-Gómez, J. Maldonado-Valderrama, M. J. Gálvez-Ruiz, A. Martín-Rodríguez, M. A. Cabrerizo-Vílchez and J. Vicente, Surface rheology of sorbitan tristearate and β-lactoglobulin: Shear and dilatational behavior, J. Non-Newton. Fluid 166 (2011) 713-722; DOI: 10.1016/j.jnnfm.2011.03.008.

  • J. Maldonado-Valderrama and J. M. Rodríguez Patino, Interfacial rheology of protein-surfactant mixtures, Curr. Opin. Colloid In. 15 (2010) 271-282; DOI: 10.1016/j.cocis.2009.12.004.

  • J. Krgel, S. R. Derkatch and R. Miller, Interfacial shear rheology of protein-surfactant layers, Adv. Colloid Interfac. 144 (2008) 38-53; DOI: 10.1016/j.cis.2008.08.010.

  • S. Reynaert, C. F. Brooks, P. Moldenaers, J. Vermant and G. G. Fuller, Analysis of the magnetic rod interfacial stress rheometer, J. Rheol. 52 (2008) 261-285; DOI: 10.1122/1.2798238.

  • T. Verwijlen, P. Moldenaers, H. A. Stone and J. Vermant, Study of the flow field in the magnetic rod interfacial stress rheometer, Langmuir 27 (2011) 9345-9358; DOI: 10.1021/la201109u.

  • J. Ding, H. E. Warriner and J. A. Zasadzinski, Magnetic needle viscometer for Langmuir mono-layers, Langmuir 18 (2002) 2800-2806; DOI: 10.1021/la015589.

  • F. Ravera, G. Loglio and V. I. Kovalchuk, Interfacial dilational rheology by oscillating bubble/drop methods, Curr. Opin. Colloid In. 15 (2010) 217-228; DOI: 10.1016/j.cocis.2010.04.001.

  • V. B. Fainerman, D. Möbius and R. Miller, Surfactants: Chemistry, Interfacial Properties, Applications, Elsevier Science, Amsterdam 2001, pp. 341-348.

  • B. A. Noskov, A. V. Akentiev, A. Yu. Bilibin, I. M. Zorin and R. Miller, Dilatational surface visco-elasticity of polymer solutions, Adv. Colloid Interfac. 104 (2003) 245-271; DOI: 10.1016/S0001-8686(03)00045-9.

  • B. A. Noskov, Dilational surface rheology of polymer and polymer/surfactant solutions, Curr. Opin. Colloid In. 15 (2010) 229-236; DOI: 10.1016/j.cocis.2010.01.006.

  • S. C. Russev, N. Alexandrov, K. G. Marinova, K. D. Danov, N. D. Denkov, L. Lyutov, V. Vulchev and C. Bilke-Krause, Instrument and methods for surface dilatational rheology measurements, Rev. Sci. Instrum. 79 (2008) 104102; DOI: 10.1063/1.3000569.

  • P. Gupta, C. Elkins, T. Long and G. Wilkes, Electrospinning of linear homopolymers of poly(methyl methacrylate): exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent, Polymer 46 (2005) 4799-4810; DOI: 10.1016/j.polymer.2005.04.021.

  • F. Ravera, G. Loglio, P. Pandolfini, E. Santini and L. Liggieri, Determination of the dilational viscoelasticity by the oscillating drop/bubble method in a capillary pressure tensiometer, Colloid. Surface. A 365 (2010) 2-13; DOI: 10.1016/j.colsurfa.2010.01.040.

  • P. Wilde, A. Mackie, F. Husband, P. Gunning and V. Morris, Proteins and emulsifiers at liquid interfaces, Adv. Colloid Interfac. 108-109 (2004) 63-71; DOI: 10.1016/j.cis.2003.10.011.

  • V. B. Fainerman, E. H. Lucassen-Reynders and R. Miller, Description of the adsorption behaviour of proteins at water/fluid interfaces in the framework of a two-dimensional solution model, Adv. Colloid Interfac. 106 (2003) 237-259; DOI: 10.1016/S0001-8686(03)00112-X.

  • D. Langevin, Influence of interfacial rheology on foam and emulsion properties, Adv. Colloid Interfac. 88 (2000) 209-222; DOI: 10.1016/S0001-8686(00)00045-2.

  • J. L. Ventureira, A. J. Bolontrade, F. Speroni, E. David-Briand, A. A. Scilingo, M. H. Ropers, F. Boury, M. C. Añón and M. Anton, Interfacial and emulsifying properties of amaranth (Amaranthus hypochondriacus) protein isolates under different conditions of pH, LWT-Food Sci. Technol. 45 (2012) 1-7; DOI: 10.1016/j.lwt.2011.07.024.

  • M. A. Bos and T. Vliet, Interfacial rheological properties of adsorbed protein layers and surfactants: a review, Adv. Colloid Interfac. 91 (2001) 437-471; DOI: 10.1016/S0001-8686(00)00077-4.

  • A. G. Bykov, Shi-Yow Lin, G. Loglio, V. V. Lyadinskaya, R. Miller and B. A. Noskov, Impact of surfactant chain length on dynamic surface properties of alkyltrimethylammonium bromide/polyacrylic acid solutions, Colloid. Surface. A 354 (2010) 382-389; DOI: 10.1016/j.colsurfa.2009.09.015.

  • W. J. Mcauley, D. S. Jones and V. L. Kett, Characterisation of the interaction of lactate dehydrogenase with Tween-20 using isothermal titration calorimetry, interfacial rheometry and surface tension measurements, J. Pharm. Sci. 98 (2009) 2659-2669; DOI: 10.1002/jps.21640.

  • E. Dickinson, Adsorbed protein layers at fluid interfaces: interactions, structure and surface rheology, Colloid. Surface. B 15 (1999) 161-176; DOI: 10.1016/S0927-7765(99)00042-9.

  • A. R. Mackie, A. P. Gunning, P. J. Wilde and V. J. Morris, Orogenic displacement of protein from the oil/water interface, Langmuir 16 (2000) 2242-2247; DOI: 10.1021/la990711e.

  • C. Carrera Sánchez, M. Rosario Rodríguez Niño, A. Lucero Caro and J. M. Rodríguez Patino, Biopolymers and emulsifiers at the air-water interface, Implications in food colloid formulations, J. Food Eng. 67 (2005) 225-234; DOI: 10.1016/j.jfoodeng.2004.05.065.

  • A. G. Bykov, Shi-Yow Lin, G. Loglio, R. Miller and B. A. Noskov, Kinetics of adsorption layer formation in solutions of polyacid/surfactant complexes, J. Phys. Chem. C 113 (2009) 5664-5671; DOI: 10.1021/jp810471y.

  • B. A. Noskov, G. Loglio and R. Miller, Dilational surface visco-elasticity of polyelectrolyte/surfactant solutions: Formation of heterogeneous adsorption layers, Adv. Colloid Interfac. 168 (2011) 179-197; DOI: 10.1016/j.cis.2011.02.010.

  • J. M. Rodríguez Patino, C. C. Sánchez, M. C. Fernández and M. R. Niño, Protein displacement by monoglyceride at the air-water interface evaluated by surface shear rheology combined with Brewster angle microscopy, J. Phys. Chem. B 111 (2007) 8305-8313; DOI: 10.1021/jp071994j.

  • S. Vandebril, J. Vermant and P. Moldenaers, Efficiently suppressing coalescence in polymer blends using nanoparticles: role of interfacial rheology, Soft Matter 6 (2010) 3353-3362; DOI: 10.1039/b927299b.

  • B. Madivala, S. Vandebril, J. Fransaerb and J. Vermant, Exploiting particle shape in solid stabilized emulsions, Soft Matter 5 (2009) 1717-1727; DOI: 10.1039/b816680c.

  • P. A. Wierenga and H. Gruppen, New views on foams from protein solutions, Curr. Opin. Colloid In. 15 (2010) 365-373; DOI: 10.1016/j.cocis.2010.05.017.

  • L. Piazza, J. Gigli and A. Bulbafello, Interfacial rheology study of espresso coffee foam structure and properties, J. Food Eng. 84 (2008) 420-429; DOI: 10.1016/j.jfoodeng.2007.06.001.

  • T. Croguennec, A. Renault, S. Beaufils, J. Dubois and S. Pezennec, Interfacial properties of heat-treated ovalbumin, J. Colloid Interf. Sci. 315 (2007) 627-636; DOI: 10.1016/j.jcis.2007.07.041.

  • J. Maldonado-Valderrama, A. Martßn-Rodriguez, M. J. Gálvez-Ruiz, R. Miller, D. Langevin and M. A. Cabrerizo-Vílchez, Foams and emulsions of β-casein examined by interfacial rheology, Colloid. Surface. A 323 (2008) 116-122; DOI: 10.1016/j.colsurfa.2007.11.003.

  • T. J. Wooster and M. A. Augustin, Rheology of whey protein-dextran conjugate films at the air/water interface, Food Hydrocolloid. 21 (2007) 1072-1080; DOI: 10.1016/j.foodhyd.2006.07.015.

  • D. A. Kim, M. Cornec and G. Narsimhan, Effect of thermal treatment on interfacial properties of β-lactoglobulin, J. Colloid Interf. Sci. 285 (2005) 100-109; DOI: 10.1016/j.jcis.2004.10.044.

  • A. Sanfeld and A. Steinchen, Emulsions stability, from dilute to dense emulsions - Role of drops deformation, Adv. Colloid Interfac. 140 (2008) 1-65; DOI: 10.1016/j.cis.2007.12.005.

  • M. Cegnar, J. Kristl and J. Kos, Nanoscale polymer carriers to deliver chemotherapeutic agents to tumours, Expert Opin. Biol. Th. 5 (2005) 1557-1569; DOI: 10.1517/14712598.5.12.1557.

  • K. Teskac and J. Kristl, The evidence for solid lipid nanoparticles mediated cell uptake of resveratrol, Int. J. Pharm. 390 (2010) 61-69; DOI: 10.1016/j.ijpharm.2009.10.011.

  • N. Bhardwaj and S. C. Kundu, Electrospinning: A fascinating fiber fabrication technique, Biotechnol. Adv. 28 (2010) 325-347; DOI: 10.1016/j.biotechadv.2010.01.004.

  • G. C. Rutledge and S. V. Fridrikh, Formation of fibers by electrospinning, Adv. Drug Deliver. Rev. 59 (2007) 1384-1391; DOI: 10.1016/j.addr.2007.04.020.

  • R. Rošic, P. Kocbek, S. Baumgartner and J. Kristl, Electro-spun hydroxyethyl cellulose nanofibers: The relationship between structure and process, J. Drug Deliv. Sci. Tec. 21 (2011) 229-236.

  • X. Geng, O. H. Kwon and J. Jang, Electrospinning of chitosan dissolved in concentrated acetic acid solution, Biomaterials 26 (2005) 5427-5432; DOI: 10.1016/j.biomaterials.2005.01.066.

  • M. G. McKee, G. L. Wilkes, R. H. Colby and T. E. Long, Correlations of solution rheology with electrospun fiber formation of linear and branched polyesters, Macromolecules 37 (2004) 1760-1767; DOI: 10.1021/ma035689h.

  • Q. P. Pham, U. Sharma and A. G. Mikos, Electrospinning of polymeric nanofibers for tissue engineering applications: A review, Tissue Eng. 12 (2006) 1197-1211; DOI: 10.1089/ten.2006.12.1197.

  • O. Regev, S. Vandebril and E. C. Zussman, The role of interfacial viscoelasticity in the stabilization of an electrospun jet, Polymer 51 (2010) 2611-2620; DOI: 10.1016/j.polymer.2010.03.061.

  • P. Erni, P. Fischer, E. J. Windhab, V. Kusnezov, H. Stettin and J. Läuger, Stress- and strain-controlled measurements of interfacial shear viscosity and viscoelasticity at liquid/liquid and gas/liquid interfaces, Rev. Sci. Instrum. 74 (2003) 4916-4925; DOI: 10.1063/1.1614433.

  • P. Ahlin, J. Kristl, M. Sentjurc, J. Strancar and S. Pecar, Influence of spin probe structure on its distribution in SLN dispersions, Int. J. Pharm. 196 (2000) 241-244; DOI: 10.1016/S0378-5173(99)00431-7.

  • P. Ahlin, J. Kristl, S. Pecar, J. Strancar and M. Sentjurc, The effect of lipophilicity of spin-labeled compounds on their distribution in solid lipid nanoparticle dispersions studied by electron paramagnetic resonance, J. Pharm. Sci. 92 (2001) 58-66; DOI: 10.1002/jps.10277.

Acta Pharmaceutica

The Journal of Croatian Pharmaceutical Society

Journal Information


IMPACT FACTOR 2016: 1.288
5-year IMPACT FACTOR: 1.600

CiteScore 2016: 1.55

SCImago Journal Rank (SJR) 2016: 0.353
Source Normalized Impact per Paper (SNIP) 2016: 0.854

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 18 18 18
PDF Downloads 10 10 10