Atrotorquata lineata as a proxy for Juncus roemerianus, Part II: Tracking changes in positions of Juncus roemerianus marshes through time by use of the fungal proxy Atrotorquata lineata

Open access

Abstract

Juncus roemerianus is a species that occurs at the upper reaches of salt water influence in marshes from Delaware to Texas. As such, J. roemerianus is a good marker for sea level, defined for this study as mean highest high water; thus, being able to track its positions over time should enable one to track past changes in relative sea level. In 2006, a palynomorphic fingerprint to identify surface sediment from J. roemerianus marshes was discovered in a South Carolina study (Marsh 2006, Marsh & Cohen 2008). Further study (Marsh & Cohen 2016) showed that one component of this fingerprint, the spore of the fungus Atrotorquata lineata, was so omnipresent in surface sediment from J. roemerianus marshes that the fungus, by itself, can be considered a proxy for J. roemerianus marshes.

In this study we investigated the potential to use Atrotorquata lineata to track past positions of Juncus roemerianus marshes. First we investigated whether A. lineata is preserved beneath the surface. Cores from South Carolina, North Carolina and Florida were found to contain A. lineata, including one from the Harney River area of southwestern Florida in which we had previously found A. lineata at ca 250 cm depth at a level that had been radiocarbon-dated to ca 3200 years BP (Cohen 1968, Cohen & Spackman 1972, 1977, Spackman & Cohen 1976, Marsh & Cohen 2016). Building upon that discovery, we then investigated the possibility of tracking changes in the size and position of J. roemerianus marshes over time. Additional sets of cores clearly revealed evidence of expansion and contraction of J. roemerianus patches over time and further suggested recent past fluctuations in sea level that were both higher and lower than at present but contained within an overall transgressive sequence.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • BRICKER-URSO S. NIXON S.W. COCHRAN J.K. HIRSCHBERG D.J. & HUNT C. 1989. Accretion rates and sediment accumulation in Rhode Island salt marshes. Estuaries 12(4): 300-317.

  • CARR A.S. BOOM A. CHASE B.M. MEADOWS M.E. & GRIMES H.L. 2015. Holocene sea level and environmental change on the west coast of South Africa: evidence from plant biomarkers stable isotopes and pollen. J. Paleolimnol. DOI 10.1007/ s10933-015-9833-7.

  • CAHOON D.R. 2014. Estimating relative sea-level rise and submergence potential at a coastal wetland. Estuaries and Coasts. DOI 10.1007/s12237-014-9872-8.

  • COHEN A.D. 1968. The petrology of some peats of southern Florida (with special reference to the origin of coal). Unpublished PhD Dissertation. The Pennsylvania State University.

  • COHEN A.D. & SPACKMAN W. 1972. Methods in peat petrology and their application to reconstruction of paleoenvironments. Geol. Soc. Am. Bull. 80: 129-142.

  • COHEN A.D. & SPACKMAN W. 1974. Petrology of peats from the Everglades and coastal swamps of southern Florida: Environments of South Florida Present and Past. Miami Geological Memoir 2: 233-255.

  • COHEN A.D. & SPACKMAN W. 1977. Phytogenic organic sediments and sedimentary environments in the Everglades-mangrove complex Part II origin description and classification of the peats of southern Florida. Palaeontographica B 162: 1-132.

  • COHEN A.D. MARSH P.E. & STACK E.M. 2008. Effects of the fires of 2007 on peat deposits of the Okefenokee Swamp: Preliminary results based on pre-fire and post-fire comparisons of peat thickness micropetrography and chemistry. Abstracts The Society of Wetland Scientists.

  • COLQUHOUN D.J. & BROOKS M.J. 1986. New evidence from the southeastern U. S. for eustatic components in the late Holocene sea levels. Geoarchaeology: Intern. J. 1(3): 275-291.

  • CULVER S.J. & HORTON B.P. 2005. Infaunal marsh foraminifera from the Outer Banks North Carolina U.S.A. J. Foramini. Res. 35(2): 148-170.

  • DEPRATTER C.B. & HOWARD J.D. 1981 Evidence for a sea level lowstand between 4500 and 2400 years B. P. on the southeast coast of the United States. J. Sed. Petrol. 51(4): 1287-1295.

  • DONN W.L. & SHAW D.M. 1963. Sea level and climate of the past century. Science New Series. 142(3596): 1166-1167.

  • DONNELLY J.P. & BERTNESS M.D. 2001. Rapid shoreward encroachment of salt marsh cordgrass in response to accelerated sea-level rise. Proceedings of the National Academy of Sciences 98(25): 14218-14223.

  • EINSELE G. HERM D. & SCHWARTZ H.U. 1974. Holocene eustatic (?) sea level fluctuation at the coast of Mauritania. “Meteor” Forsch.-Ergebnisse Reihe C. 18: 43-62. In: Bloom A.L. (ed.) 1977. Atlas of sea level curves. International Geological Correlation Programme Project 61 Sea-Level Project.

  • ELEUTERIUS L.N. 1976. The distribution of Juncus roemerianus in the salt marshes of North America. Chesapeake Science 17(4): 289-292.

  • FAIRBRIDGE R.W. 1961. Eustatic changes in sealevel: 99-185. In: Ahrens L.H. Press F. Rankama K. & Runcorn S.K. (eds). Physics and Chemistry of the Earth. Pergamon Press. NY.

  • FAIRBRIDGE R.W. 1976. Shellfish-eating preceramic Indians in coastal Brazil. Science. 191: 353-359. In: Bloom A.L. (ed.). 1977. Atlas of sea level curves International Geological Correlation Programme Project 61 Sea-Level Project.

  • FINKELSTEIN K. & FERLAND M.A. 1987. Backbarrier response to sea-level rise Eastern Shore of Virginia. Sea-level fluctuation and coastal evolution; Based on a symposium in honor of William Armstrong Price 41: 145-155.

  • GARDNER L.R. 2004. Geologic history and the ergodic principle: foundations for long-term ecological research in salt marshes The Ecogeomorphology of Tidal Marshes. Coastal and estuarine studies 59. American Geophysical Union. 189-201.

  • GARDNER L.R. & PORTER D.E. 2001. Stratigraphy and geologic history of a southeastern salt marsh basin North Inlet South Carolina USA. Wetlands Ecology and Management 9: 371-385.

  • GAUNT G.D. & TOOLEY M.J. 1974. Evidence for Flandrian sea-level changes in the Humber estuary and adjacent areas. Geol. Survey Great Britain Bull. 48: 25-41. In: Bloom A.L. (ed.) 1977. Atlas of sea level curves International Geological Correlation Programme Project 61 Sea-Level Project.

  • GAYES P.T. SCOTT D.B. COLLINS E.S. & NELSON D.D. 1992. A late Holocene sea-level fluctuation in South Carolina Quaternary Coasts of the United States: Marine and Lacustrine Systems. SEPM Special Publication 48: 155-160.

  • GOODBRED S.L. JR. WRIGHT E.E. & HINE A.C. 1998. Sea-level change and storm-surge deposition in a late Holocene Florida Salt Marsh. J. Sed. Res. 68(2): 240-252.

  • HEYWORTH A. 1986. Submerged forests as sea-level indicators: 401-411. In: Van de Plassche O. (ed.) Sea-level research: A manual for the collection and evaluation of data. Geo Books. Norwich UK.

  • HICKS S.D & CROSBY J.E. 1974. Trends and variability of yearly mean sea level 1893-1972 U. S. Nat. Oceanic and Atmospheric Administration Tech. Mem. NOS 13. In: Bloom A.L. (ed.). 1977. Atlas of sea level curves. International Geological Correlation Programme Project 61 Sea-Level Project.

  • HORTON B.P. CORBETT R. CULVER S.J. EDWARDS R.J. & HILLIER C. 2006. Modern saltmarsh diatom distributions of the Outer Banks North Carolina and the development of a transfer function for high resolution reconstructions of sea level. Estuar. Coast. Shelf Sci. 69(3-4): 381-394.

  • HOWARD J.D. & FREY R.W. 1980. Holocene depositional environments of the Georgia Coast and continental shelf: 66-134. In: Howard J.D. DePratter C.B. & Frey R.W. (eds) Excursions in Southeastern Geology The Archaeology - Geology of the Georgia Coast. Guidebook 20. Geological Society of America. Atlanta Georgia.

  • KEMP A. HORTON B.P. CORBETT R. EDWARDS R.J. FEYEN J.C. HILLER C. & THOMPSON K. 2006. Reconstructing relative sea-level on the Outer Banks North Carolina: A microfossil based transfer function approach. Geological Society of America Abstracts with Programs 38(7): 226.

  • KOHLMEYER J. & VOLKMANN-KOHLMEYER B. 1993. Atrotorquata and Loratospora: New Ascomycete Genera on Juncus roemerianus. Systema Ascomycetum 12: 7-22.

  • KUEHN D.W. 1980. Offshore transgressive peat deposits of southwest Florida: Evidence for a late Holocene rise of sea level. Unpublished Master’s Thesis. The Pennsylvania State University.

  • KUMP L.R. & HIRE A.C. 1986. Ooids as sea-level indicators: 175-193. In: Van de Plassche O. (ed.) Sea-level research: A manual for the collection and evaluation of data. Geo Books. Norwich UK.

  • LABOREL J. 1986. Vermetid gastropods as sea level indicators: 281-310. In: Van de Plassche O. (Ed.) Sea-level research: A manual for the collection and evaluation of data. Geo Books. Norwich UK.

  • MARSH P.E. 2006 Pollen fingerprinting in modern salt marsh environments in South Carolina: The search for analytical standards. Unpublished Master’s thesis. University of South Carolina.

  • MARSH P.E. 2008. Tracking changes in positions of Juncus roemerianus marshes by use of a palynomorphic fingerprint. Unpublished PhD dissertation. University of South Carolina.

  • MARSH P.E. & COHEN A.D. 2007. Tracking sea level changes using a newly discovered palynomorphic fingerprint to detect the presence of high-level salt marsh sediments with depth. Geological Society of America Abstracts with Programs 39(2): 24.

  • MARSH P.E. & COHEN A.D. 2008. Identifying highlevel salt marshes using a palynomorphic fingerprint with potential implications for tracking sea level change. Rev. Palaeobot. Palynol. 148(1): 60-69.

  • MARSH P.E. & COHEN A.D. 2016. Atrotorquata lineata as a proxy for Juncus roemerianus Part I: Atrotorquata lineata as a proxy for Juncus roemerianus in surface sediments from high level salt marshes in the southeastern Unites States. Acta Palaeobot. 56(2): 523-535.

  • MOORHEAD K.K. & BRINSON M.M. 1995. Response of wetlands to rising sea level in the lower coastal plain of North Carolina. Ecological applications 5(1): 261-271.

  • MORRIS J.T. SUNDARESHWAR P.V. NIETCH C.T. KJERFVE B. & CAHOON D.R. 2002. Responses of coastal wetlands to rising sea level. Ecology 83(10): 2869-2877.

  • NOAA Tides and Currents Webpage. Available from: http://tidesandcurrents.noaa.gov/ Accessed June 22 2015.

  • PANELLI S. BRAMBATI E. BONACINA C. & FELIGINI M. 2013. Diversity of fungal flora in raw milk from the Italian Alps in relation to pasture altitude. SpringerPlus 2: 405.

  • PIRAZZOLI P. 1976. Les variations des lignes de rivage depuis 2000 ans et leurs causes possibles. (Unpublished Colloquim report ASEQUA Conference Variations de la Lingne de Rivage Holocene sur la Côte Ouest-Africaine. 5-11 Dec. 1996. In: Bloom A.L. (ed.). 1977. Atlas of sea level curves. International Geological Correlation Programme Project 61 Sea-Level Project.

  • REDFIELD A.C. & RUBIN M. 1962. The age of salt marsh peat and its relation to recent changes in sea level at Barnstable Massachusetts. Proceedings of the National Academy of Sciences of the United States of America 48(10): 1728-1735.

  • SCOTT D.S. & MEDIOLI F.S. 1978. Vertical zonations of marsh foraminifera as accurate indicators of former sea levels. Nature 272: 528-531.

  • SCOTT D.S. & MEDIOLI F.S. 1986. Foraminifera as sea level indicators: 435-456. In: Van de Plassche O. (ed.) Sea-level research: A manual for the collection and evaluation of data. Geo Books. Norwich UK.

  • SPACKMAN W. COHEN A.D. GIVEN P.H. & CASAGRANDE D.J. 1976. The Comparative Study of the Okefenokee Swamp and the Everglades-Mangrove Swamp-Marsh Complex of Southern Florida: A Field Guide Book. The Coal Research Section. The Pennsylvania State University.

  • SPACKMAN W. DOLSEN C.P. & RIEGEL W.L. 1966. Phytogenic organic sediments and sedimentary environments in the Everglades-Mangrove Complex: Part 1 evidence of a transgressing sea and its effects on environments of the Shark River area of southwestern Florida. Palaeontographica B 117: 135-152.

  • STEVENSON J.C. WARD L.G. & KEARNY M.S. 1986. Vertical accretion in marshes with varying rates of sea level rise: 241-259. In: Wolfe D.A. (ed.) Estuarine variability. Academic Press. New York.

  • TERS M. 1973. Les variations du niveau marin depuis 10000 ans le long du littoral Atlantique Francais Assoc. Francaise pour l’Etude du Quaternaire. Suppl. Au Bull. 36: 114-142. In: Bloom A.L. (ed.) 1977 Atlas of sea level curves. International Geological Correlation Programme Project 61 Sea- Level Project.

  • TÖRNQVIST T.E. GONZÁLEZ J.L. VAN DER BORG K. DE JONG A.F.M. & KURNIK C.W. 2004. Deciphering Holocene sea-level history on the U. S. Gulf Coast: A high-resolution record from the Mississippi Delta. GSA Bulletin 116(7/8): 1026-1039.

  • TRAVERSE A. 1988. Paleopalynology Unwin Hyman. Boston Massachusetts.

  • URIEN C.M. 1970. Les rivages et le plateau continental du Sud du Bresil de l’Uruguay et de l’Argentine. Quaterniaria. 12: 57-70. In: Bloom A.L. (ed.) 1977. Atlas of sea level curves. International Geological Correlation Programme Project 61 Sea-Level Project.

  • WILLIAMS K. EWEL K.C. STUMPF R.P. PUTZ F.E. & WORKMAN T.W. 1999. Sea-level rise and coastal forest retreat on the west coast of Florida USA. Ecology 80(6): 2045-2063.

Search
Journal information
Impact Factor


CiteScore 2018: 1.16

SCImago Journal Rank (SJR) 2018: 0.402
Source Normalized Impact per Paper (SNIP) 2018: 0.616

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 201 102 1
PDF Downloads 88 55 1