Open Access

Heart Rate Variability and Electrodermal Activity as Noninvasive Indices of Sympathovagal Balance in Response to Stress


Cite

The autonomic nervous system (ANS) is a principal regulatory system for maintaining homeostasis, adaptability and physiological flexibility of the organism at rest as well as in response to stress. In the aspect of autonomic regulatory inputs on the cardiovascular system, recent research is focused on the study of exaggerated/diminished cardiovascular reactivity in response to mental stress as a risk factor for health complications, e.g. hypertension. Thus, the analysis of biological signals reflecting a physiological shift in sympathovagal balance during stress in the manner of vagal withdrawal associated with sympathetic overactivity is important. The heart rate variability, i.e. “beat-to-beat” oscillations of heart rate around its mean value, reflects mainly complex neurocardiac parasympathetic control. The electrodermal activity could represent “antagonistic” sympathetic activity, the so-called “sympathetic arousal” in response to stress. The detailed study of the physiological parameters under various stressful stimuli and in recovery phase using traditional and novel mathematical analyses could reveal discrete alterations in sympathovagal balance. This article summarizes the importance of heart rate variability and electrodermal activity assessment as the potential noninvasive indices indicating autonomic nervous system activity in response to mental stress.

ISSN:
1335-8421
Language:
English
Publication timeframe:
3 times per year
Journal Subjects:
Medicine, Clinical Medicine, Internal Medicine, Cardiology