Heart Rate Variability and Electrodermal Activity as Noninvasive Indices of Sympathovagal Balance in Response to Stress

Open access


The autonomic nervous system (ANS) is a principal regulatory system for maintaining homeostasis, adaptability and physiological flexibility of the organism at rest as well as in response to stress. In the aspect of autonomic regulatory inputs on the cardiovascular system, recent research is focused on the study of exaggerated/diminished cardiovascular reactivity in response to mental stress as a risk factor for health complications, e.g. hypertension. Thus, the analysis of biological signals reflecting a physiological shift in sympathovagal balance during stress in the manner of vagal withdrawal associated with sympathetic overactivity is important. The heart rate variability, i.e. “beat-to-beat” oscillations of heart rate around its mean value, reflects mainly complex neurocardiac parasympathetic control. The electrodermal activity could represent “antagonistic” sympathetic activity, the so-called “sympathetic arousal” in response to stress. The detailed study of the physiological parameters under various stressful stimuli and in recovery phase using traditional and novel mathematical analyses could reveal discrete alterations in sympathovagal balance. This article summarizes the importance of heart rate variability and electrodermal activity assessment as the potential noninvasive indices indicating autonomic nervous system activity in response to mental stress.

  • 1. Fontes MAP, Xavier CH, de Menezes RCA, DiMicco JA. The dorsomedial hypothalamus and the central pathways involved in the cardiovascular response to emotional stress. J Neurosci 2011; 184: 64-74.

  • 2. McEwen BS, Wingfield JC. The concept of allostasis in biology and biomedicine. Horm Behav 2003; 43: 2-15.

  • 3. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Circulation 1996; 93: 1043-1065.

  • 4. Lloyd-Jones DM, Walsh JA, Prineas RJ, Ning H, Liu K, Daviglus ML, Shea S, Detrano RC, Tandri H, Greenland P. Association of Electrocardiographic Abnormalities With Coronary Artery Calcium and Carotid Artery Intima-Media Thickness in Individuals Without Clinical Coronary Heart Disease (from the Multi-Ethnic Study of Atherosclerosis [MESA]). Am J Cardiol 2009; 104(8): 1086-1091.

  • 5. Smith PA, Graham LN, Mackintosh AF, Stoker JB, Mary DASG. Relationship between central sympathetic activity and stages of human hypertension. Am J Hypertens 2004; 17(3): 217-222.

  • 6. Lovallo WR, Gerin W. Psychophysiological reactivity: mechanisms and pathways to cardiovascular disease. Psychosom Med 2003; 65: 36-45.

  • 7. Lovallo WR. Do low levels of stress reactivity signal poor states of health? Biol Psychol 2011; 86(2): 121-128.

  • 8. Voss A, Schulz S, Schroeder R, Baumert M, Caminal, P. Methods derived from nonlinear dynamics for analyzing heart rate variability. Philos T Roy Soc A 2009; 367(1887): 277-296.

  • 9. Thayer JF, Lane RD. A model of neurovisceral in emotion regulation and dysregulation. J Affect Disorders 2000; 61(3): 201-216.

  • 10. Thayer JF, Lane RD. Claude Bernard and the heart-brain connection: futher elaboration of model of neurovisceral integration. Neurosci Biobehav Rev 2009; 33(2): 81-88.

  • 11. Benarroch EE. The central autonomic network: Functional organization, dysfunction and perspective. Mayo Clin Proc 1993; 68: 988-1001.

  • 12. Cutshall SM, Wentworth LJ, Wahner-Roedler DI, Vincent A, Schmidt JE, Loehrer LL, Cha SS, Bauer BA. Evaluation of a biofeedback-assisted mediation program as a stress management tool for hospital nursers: a pilot study. Explore (NY) 2011; 7: 110-112.

  • 13. Porges SW. Orienting in a defensive world: Mammalian modification of our evolutionary heritage. A polyvagal theory. Psychophysiology 1995; 32: 301-318.

  • 14. Porges SW. The polyvagal theory: new insights into adaptive reactions of the autonomic nervous system. Cleve Clin J Med 2009; 76(2): 86-90.

  • 15. Lane RD, McRae K, Reiman EM, Chen K, Ahern GL, Thayer JF. Neural correlates of heart rate variability during emotion. NeuroImage 2009; 44(1): 213-222.

  • 16. Ahs F, Sollers IIIJJ, Furmark T, Fredrikson M, Thayer JF. High-frequency heart rate variability and corticostriatal activity in men and women with social phobia. Neuroimage 2009; 47: 815-820.

  • 17. Thayer JF, Ahs F, Fredrikson M, Sollers IIIJJ, Wager TD. A meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and health. Neurosci Biobehav R 2012; 36(2): 747-756.

  • 18. Javorka K. Lekarska fyziologia. Martin: Osveta; 2009. 742.

  • 19. Porta A, D`addio G, Bassani T, Maestri R, Pinna GD. Assesment of cardiovascular regulation through irreversibility analysis of heart period variability: a 24 hours Holter study in healthy and chronic heart failure populations. Philos T Roy Soc A 2009; 367(1892): 1359-1375.

  • 20. Guzzetti S, La Rovere MT, Pinna GD. Different Spectral Components of 24-Hours Heart Rate Variability and Related to Different Modes of Death in Chronic Heart Failure. ACC Curr J Rev 2005; 14(6): 32.

  • 21. Porta A, Guzzetti S, Montano N, Gnecchi-Ruscone T, Furlan R, Malliani A. Time reversibility in short-term heart period variability. Comput Cardiol 2006; 33: 77-80.

  • 22. Javorka M, Tonhajzerova I, Turianikova Z, Chladekova L, Javorka K, Calkovska A. Quantification of nonlinear features in cardiovascular signals. AMM 2011; suppl 1: 31-40.

  • 23. Porta A, Casali KR, Casali AG, Gnecchi-Ruscone T, Tobaldini E, Montano N, Lange S, Geue D, Cysarz D, Van Leeuwen P. Temporal asymmetries of short-term heart period variability are linked to autonomic regulation. Am J Physiol Regul Integr Comp Physiol 2008; 295(2): R550-R557.

  • 24. Guzik P, Piskorski J, Krauze T, Wykretowicz A, Wysocki H. Heart rate asymmetry by Poincaré plots of RR intervals. Biomedizinische Technik 2006; 51(4): 272-275.

  • 25. Costa MD, Peng CK, Goldberger AL. Multiscale analysis of heart rate dynamics: entropy and time irreversibility measures. Cardiovasc Eng 2008; 8(2): 88-93.

  • 26. Cannon WB. Stresses and strains of homeostasis. Am J Med Sci 1935; 189: 1-14.

  • 27. Berntson GG, Cacioppo JT. Heart rate variability: Stress and psychiatric conditions. Camm AJ, Malik M. Dynamic electrocardiography. New York: Futura 2004; 56-63.

  • 28. McEwen BS. Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev 2007; 87(3): 873-904.

  • 29. Chida Y, Steptoe A. Stress Reactivity and Its Association With Increased Cardiovascular Risk: A Role for the Sympathetic Nervous System? Hypertension 2010; 55(10): 26-33.

  • 30. Dawson ME, Schell AM, Filion DL. The electrodermal system. Cacioppo JT, Tassinary LG, Berntson GG. Handbook of psychophysiology. Cambridge UK: CUP 2007; 159-181.

  • 31. Kobayashi N, Yoshino A, Takahashi Y, Nomura S. Autonomic arousal in cognitive conflict resolution. Autonomic Neuroscience 2007; 132(1-2): 70-75.

  • 35. Tarchanoff J. Décharges électriques dans la peau de l homme sous l influence de l excitation des organs des sens et de différentes forms d activité psychique. C R Soc Biol (Paris) 1889; 41: 447-451.

  • 35. Edelberg R. Electrodermal mechanisms: A critique of the two-effector hypothesis and a proposed replacement. Roy. Progress in electrodermal research. New York: Plenum Press 1993; 7-29.

  • 34. Murphy RO. Using skin conductance in judgment and decision making research. Schutle-Mecklenbeck M, Kuehberger A, Ranyard R. A handbook of process tracing methods for decision research. New York, NY: Psychology Press 2010; 1-33.

  • 35. Sokolov EN. Perception and the conditioned reflex. Oxford: Pergamon Press 1993;

  • 36. Humphreys LG. Measured of strength of conditioned eyelid responses. J Gen Physiol 1943; 29: 101-111.

  • 37. Boucsein W. Electrodermal activity. Springer New York; 2011, 1-86.

  • 38. Folkow B. Perspectives on the integrative functions of the sympatho-adrenomedullary system . Autonomic Neuroscience 2000; 83(3): 101-115.

  • 39. Kreibig SD. Autonomic nervous system activity in emotion: A review. Biolog Psychol 2010; 84(3): 394-421.

  • 40. Oldehinkel AJ, Verhulst FC, Ormel J. Low heart rate: a marker of stress resilience. The TRIALS study. Biol Psychiatry 2008; 63(12): 1141-1146.

  • 41. Tonhajzerova I, Javorka K, Petrášková M. Zmeny variability frekvencie srdca (VFS) pri mentálnej záťaži. 4esslov Pediat 2000; 55: 562-567.

  • 42. Dimsdale JE. Psychological Stress and Cardiovascular Disease. J A Coll Cardiol 2008; 51(13): 1237-1246.

  • 43. Vuksanovic V, Gal V. Heart rate variability in mental stress aloud. Med Eng Phys 2007; 29(3): 344-349.

  • 44. Richman J, Moorman JR. Physiological time-series analysis using approximate entropy and sample entropy.

  • Am J Physiol: Heart and Ciculatory Physiology 2000; 278(6): 2039-2049.

  • 45. Porta A, Guzzetti S, Montano N, Furlan R, Pagani M, Malliani A, Cerutti S. Entropy, entropy rate and pattern classification as tools to typify complexity in short heart period variability series. IEE Trans Biomed Eng 2001; 48: 1282-1291.

  • 46. Porta A, Faes L, Masé M, D Addio G, Pinna GD, Maestri R, Montano N, Furlan R, Guzzetti S, Nollo G, Malliani A. An integrated approach based on uniform quantization for the evaluation of complexity of short-term heart rate period variability: Application to 24 h Holter recordings in healthy and heart failure humans. Chaos 2007; 17: 015117-1 - 015117-11.

  • 47. Hou F, Zhuang J, Bian Ch, Tong T, Chen Y, Yin J, Qiu X, Ning X. Analysis of heartbeat asymmetry based on multi-scale time irreversibility test. Physica A: Statistical Mechanics and its Applications 2010; 389(4): 754-760.

  • 48. Malliani A, Pagani M, Lombardi F, Cerutti S. Cardiovascular neural regulation explored in the frequency domain. Circulation 1991; 84: 482-492.

  • 49. Sloan RP, Shapiro PA, Bagiella E, Bigger JT, Lo ES, Gorman JM. Relationship Between Circulating Catecholamines and Low Frequency Heart Period Variability as Indices of Cardiac Sympathetic Activity During Mental Stress. Psychosom Med 1996; 58: 25-31.

  • 50. Tonhajzerova I. Mentálna aktivita a variabilita frekvencie srdca. In Javorka et al.: Variabilita frekvencie srdca - mechanizmy, hodnotenie, klinické využitie. Osveta 2008; 96-100.

  • 51. Guasti L, Simoni C, Mainardi L, Crepsi Ch, Cimpanelli MG, Klersy C, Gaudio G, Codari R, Maroni L, Marino F, Cosentino M, Grandi AM, Cerutti S, Venco A. Lack of relationship between cardiovascular reactivity to mental stress and autonomic modulation of the sinoatrial node in normotensive and hypertensive male subjects. Int J Psychophysiol 2009; 71(3): 258-263.

  • 55. Visnovcova Z, Mestanik M, Chladekova L, Kotianova A, Slepecky M, Calkovska A, Tonhajzerova I. Zmeny elektrodermálnej activity v odpovedi na stress. Novinky v experimentálnej a klinickej medicine - recenzovaný zborník vedeckých prác, Martin - Jesseniova Lekárska fakulta UK 2012; 198-202.

  • 53. Henry BL, Minassian A, Paulus MP, Geyer MA, Perry W. Heart rate variability in bipolar mania and schizophrenia. J Psychiat Res 2010; 44(3): 168-176.

  • 54. Berntson GG, Cacioppo JT. Heart rate variability: A neuroscientific perspective for further studies. Cardiac Electrophysiology Review 2007; 3: 279-282.

Acta Medica Martiniana

The Journal of Comenius University in Bratislava

Journal Information


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 23 23 23
PDF Downloads 6 6 6