Open Access

Nuclear Magnetic Resonance as a Diagnostic Tool in Breast Cancer

The early detection and treatment of breast cancer is of direct benefit to patients. Magnetic resonance imaging (MRI) is a promising modality for detection, diagnosis, and staging of breast cancer. MRI enables two methods: the diffusion-weighted MRI (DW MRI) and the dynamic contrast enhanced MRI (DCE MRI). DW MRI reflects the diffusion of water molecules in the extracellular fluid space and allows the estimation of cellularity and tissue structure. The value of the diffusion of water in tissue is called the apparent diffusion coefficient (ADC). ADC values in malignant lesions are smaller than in benign tissue. DCE MRI yields appropriate pharmacokinetic data of physiological parameters that relate to tissue perfusion, microvascular vessel wall permeability and extracellular volume fraction. Gadolinium based contrast agent is usually used in breast DCE MRI diagnostics. Changes in the post-contrast signal intensity help to distinguish lesions according to characteristically enhanced accumulation of contrast agent. Malignant lesions are characterized by a faster and stronger signal enhancement than benign lesions which relate to their neoangiogenesis. Over the last few years, there has been appreciable interest in the use of magnetic resonance spectroscopy (MRS) for the non-invasive analysis of breast tisue metabolites. One of the spectroscopic hallmarks of the neoplastic process appears to be the presence of total choline signal in the in vivo spectrum. Despite the fact that MRI and MRS achieve excellent results, they are still not so frequently used in comparison to mammography and breast ultrasound.

ISSN:
1335-8421
Language:
English
Publication timeframe:
3 times per year
Journal Subjects:
Medicine, Clinical Medicine, Internal Medicine, Cardiology