Nuclear Magnetic Resonance as a Diagnostic Tool in Breast Cancer

Open access

Nuclear Magnetic Resonance as a Diagnostic Tool in Breast Cancer

The early detection and treatment of breast cancer is of direct benefit to patients. Magnetic resonance imaging (MRI) is a promising modality for detection, diagnosis, and staging of breast cancer. MRI enables two methods: the diffusion-weighted MRI (DW MRI) and the dynamic contrast enhanced MRI (DCE MRI). DW MRI reflects the diffusion of water molecules in the extracellular fluid space and allows the estimation of cellularity and tissue structure. The value of the diffusion of water in tissue is called the apparent diffusion coefficient (ADC). ADC values in malignant lesions are smaller than in benign tissue. DCE MRI yields appropriate pharmacokinetic data of physiological parameters that relate to tissue perfusion, microvascular vessel wall permeability and extracellular volume fraction. Gadolinium based contrast agent is usually used in breast DCE MRI diagnostics. Changes in the post-contrast signal intensity help to distinguish lesions according to characteristically enhanced accumulation of contrast agent. Malignant lesions are characterized by a faster and stronger signal enhancement than benign lesions which relate to their neoangiogenesis. Over the last few years, there has been appreciable interest in the use of magnetic resonance spectroscopy (MRS) for the non-invasive analysis of breast tisue metabolites. One of the spectroscopic hallmarks of the neoplastic process appears to be the presence of total choline signal in the in vivo spectrum. Despite the fact that MRI and MRS achieve excellent results, they are still not so frequently used in comparison to mammography and breast ultrasound.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Gilhujs KGA Gigeret ML Bick U. Computerized analysis of breast lesions in three dimensions using dynamic magnetic-resonance imaging. Med. Phys. 1998; 25: 1647-1654.

  • Glaßer S Preim U Tönnies K Preim B. A visual analytics approach to diagnosis of breast DCE-MRI data. Computers & Graphics 2010; 34: 602 - 611.

  • Nishiura M Yasuhiro T Murase K. Evaluation of time-intensity curves in ductal carcinoma in situ (DCIS) and mastopathy obtained using dynamic contrast enhanced magnetic resonance imaging. Magnetic Resonance Imaging 2011; 29: 99-105.

  • Bella V. Stav skríningu karcinómu prsníka a ďalšie možnosti rozvoja. Onkológia 2006; 1: 26-28.

  • Hlava P Obšitníková A Pleško I Baráková A Diba ChS. Zhubné nádory v SR - vybrané epidemiologické ukazovatele. Odbor národných zdravotných registrov Národné centrum zdravotníckych informácií 2010

  • Orel SG Schnall MD LiVolsi VA Troupin RH. Suspicious breast lesions: MR imaging with radiologic-pathologic correlation. Radiology 1994; 190: 485-493.

  • Tozaki M. Interpretation of breast MRI: correlation of kinetic and morphological parameters with pathological findings. Magnetic resonance in Medical Sciences 2004; 3: 189-197.

  • Orel SG Schnall MD. MR Imaging of the Breast for the Detection Diagnosis and Staging of Breast Cancer. Radiology 2001; 220:13-30.

  • Kurz KD Roy S Mödder U Skaane P Saleh A. Typical atypical findings on dynamic MRI of the breast. European Journal of Radiology 2010; 76: 195-210.

  • Chen W Gigeret ML Bickal U Newstead GM. Automatic identification and classification of characteristic kinetic curves of breast lesions on DCE-MRI. Medical Physics 2006; 33: 2878 - 2887.

  • Kuhl ChK Mielcareck P Klaschik S Leutner C Wardelmann E Gieseke J Schild HH. Dynamic breast MR imaging: are signal intensity time course data useful for defferential diagnosis of enhancing lesions? Radiology 1999; 211: 101-110.

  • Yankeelov TE Lepage M Chakravarthy A Broome EE Niermann KJ Kelley MC Meszoely I Mayer IA Herman ChR McManus K Price RR Gore JC. Integration of quantitative DCE-MRI and ADC mapping to monitor treatment response in human breast cancer: initial results. Magnetic Resonance Imaging 2007; 25: 1-13.

  • Sinha S Lucas-Quesada FA Sinha U DeBruhl N Bassett LW. In Vivo Diffusion-Weighted MRI of the Breast: Potential for Lesion Characterization. Journal of magnetic resonance imaging 2002; 15: 693-704.

  • Galiè M Farace P Merigo F Fiorini S Tambalo S Nicolato E Sbarbati A Marzola P. Washout of small molecular contrast agent in carcinoma-derived experimental tumors. Microvascular Research 2009; 78: 370-378.

  • Lehotská V. Význam a možnosti magnetickej rezonancie (MR-MAMOGRAFIE) v diagnostike prsníkových lézií. Onkológia 2007; 4: 211-214.

  • Castellani U Cristani M Daducci A Farace P Marzola P Murino V Sbarbati A. DCE-MRI data analysis for cancer area classification. Methods Inf Med 2009; 3: 248-253.

  • American College of Radiology. Breast imagng reporting and gata system 2011 (URL:

  • Lucht REA Delorme S Heiß J Knopp MV Weber MA Griebel J Brix G. Classification of Signal-Time Curves Obtained by Dynamic Magnetic Resonance Mammography. Statistical Comparison of Quantitative Methods. Invest Radiol 2005; 40: 442-447.

  • Fox SB Generali DG Harris AL. Breast tumour angiogenesis. Breast Cancer Research 2007; 10: 1186-1796.

  • Jackson A O'Connor JPB Parker GJM Jayson GC. Imaging tumor vascular heterogeneity and angiogenesis using dynamic contrast enhanced magnetic resonance imaging. Clin Cancer Res 2007; 13: 3449-3459.

  • Twellmann T Saalbach A Gerstung O Leach MO Nattkemper TW. Image fusion for dynamic contrast enhanced magnetic resonance imaging. BioMedical Engineering OnLine 2004; 35: 1-21.

  • Elmore JG Armstrong K Lehman CD Fletcher SW. Screening for Breast Cancer. JAMA 2005; 293: 1245-1256.

  • Xinapse Systems Ltd. 2011 (URL:

  • Siegmann KC Schimpfle MM Schick F Remy ChT Fersis N Ruck P Gorriz C Claussen CD. MR Imaging-Detected Breast Lesions: Histopathologic Correlation of Lesion Characteristics and Signal Intensity Data. AJR 2002; 178: 1403-1409.

  • European Medicines Agency (EMEA). Questions and answers on the review of gadolinium-containing contrast agents. 2009 (URL:

  • Morris E. Review of breastMRI: indications and limitations. In: MillerW. editor. Seminars in roentgenology. Philadelphia (Pa): Saunders 2001; 226 - 37.

  • Barker PB Bizzi A Stefano ND Gullapalli RP Lin DDN. MRS in breast cancer. In: Clinical MR Spectroscopy Techniques and Applications. 1st ed. New York: United States of America by Cambridge University Press; 2010. p. 229-242.

  • Haddadin IS Mcintosh A Meisamy S Corum C Snyder AL Powell NJ et al. Metabolite quantification and high-field MRS in breast cancer. NMR Biomed 2009; 22: 65-76.

  • Sitter B Sonnewald U Spraul M Fjosne HE Gribbestad IS. High-resolution magic angle spinning MRS of breast cancer tissue. NMR Biomed 2002; 15: 327-37.

  • Barker PB Breiter SN Soher BJ Chatham JC Forder JR Samphilipo MA et al. Quantitative proton spectroscopy of canine brain: In vivo and in vitro correlations. Magn Reson Med 1994; 32: 157-63.

  • Bolan PJ Delabarre L Baker EH Merkle H Everson LI Yee D et al. Eliminating spurious lipid sidebands in 1H MRS of breast lesions. Magn Reson Med 2002; 48:215-22.

  • Hoult DI Richards RE. The signal-to-noise ratio of the nuclear magnetic resonance experiment. J Magn Reson 1976; 24: 71-85.

  • Meisamy S Bolan PJ Baker EH Pollema MG Le CT Kelcz F et al. Adding in vivo quantitative 1H MR spectroscopy to improve diagnostic accuracy of breast MR imaging: Preliminary results of observer performance study at 4.0 T. Radiology 2005; 236: 465-75.

  • Jacobs MA Barker PB Argani P Ouwerkerk R Bhujwalla ZM Bluemke DA. Combined dynamic contrast enhanced breast MR and proton spectroscopic imaging: A feasibility study. J Magn Reson Imaging 2005; 21: 23-8.

  • Jacobs MA Barker PB Bluemke DA Maranto C Arnold C Herskovits EH et al. Benign and malignant breast lesions: Diagnosis with multiparametric MR imaging. Radiology 2003; 229: 225-32.

  • Jacobs MA Ouwerkerk R Wolff AC Stearns V Bottomley PA Barker PB et al. Multiparametric and multi-nuclear magnetic resonance imaging of human breast cancer: Current applications. Technol Cancer Res Treat 2004; 3: 543-50.

  • Katz-Brull R Lavin PT Lenkinski RE. Clinical Utility of Proton Magnetic Resonance Spectroscopy in Characterizing Breast Lesions. Journal of the National Cancer Institute 2001; 94:1197-1203.

  • Cecil KM Schnall MD Siegelman ES Lenkinski RE. The evaluation of human breast lesions with magnetic resonance imaging and proton magnetic resonance spectroscopy. Breast Cancer Res Treat 2001; 68: 45-54.

  • Kvistad KA Bakken IJ Gribbestad IS Ehrnholm B Lundgren S Fjosne HE et al. Characterization of neoplastic and normal human breast tissues with in vivo (1)H MR spectroscopy. J Magn Reson Imaging 1999;10:159-64.

  • Jagannathan NR Kumar M Seenu V Coshic O Dwivedi SN Julka PK et al. Evaluation of total choline from in-vivo volume localized proton MR spectroscopy and its response to neoadjuvant chemotherapy in locally advanced breast cancer. Br J Cancer 2001;84:1016-1022.

  • Roebuck JR Cecil KM Schnall MD Lenkinski RE. Human breast lesions: characterization with proton MR spectroscopy. Radiology 1998;209:269-75.

  • Yeung DK Cheung HS Tse GM. Human breast lesions: Characterization with contrast-enhanced in vivo proton MR spectroscopy - initial results. Radiology 2001;220:40-6.

  • Bolan PJ Nelson MT Yee D Garwood M. Imaging in breast cancer: Magnetic resonance spectroscopy. Breast Cancer Research 2005; 7:149-152.

  • Wenkel E Geppert Che Uder M Kiefer B Bautz W Janka R. Diffusion-Weighted Imaging in Breast MRI - An Easy Way to Improve Specificity. MAGNETOM Flash 2007; 3: 28-32.

  • Buchberger W Niehoff A Obrist P DeKoekkoek-Doll P Dunser M. Clinically and mammographically occult breast lesions: detection and classification with high-resolution sonography. Semin Ultrasound CT MR 2000; 21: 325-36.

  • Guo Y Cai YQ Cai ZL et al. Differentiation of clinically benign and malignant breast lesions using diffusion-weighted imaging. J Magn Reson Imaging 2002; 16:172-178.

  • Nass S Henderson I Lashof J et al. Mammography and Beyond: Developing Technologies for the Early Detection of Breast Cancer. Washington DC: Institute of Medicine National Academy Press 2001.

  • Sinha S Lucas-Quesada FA Sinha U DeBruhl N Bassett LW. In Vivo Diffusion-Weighted MRI of the Breast: Potential for Lesion Characterization. J. Magn. Reson. Imaging 2002;15: 693-704.

  • Yoshikawa MI Ohsumi S Sugata S Kataoka M Takashima S Kikuchi K Mochizuki T. Comparison of breast cancer detection by diffusion-weighted magnetic resonance imaging and mammography. Radiat Med 2007; 25:218-223.

  • Kuroki Y Nasu N. Advances in breast MRI: diffusion-weighted imaging of the breast. Breast Cancer 2008; 15: 212-217.

  • McClymont D Mehnert A Trakic A Crozier S Kennedy D. Improving the Discrimination of Benign and Malignant Breast MRI Lesions using the Apparent Diffusion Coefficient. Digital Image Computing: Techniques and Applications 2010; 569-574.

  • Yoshikawa MI Ohsumi S Sugata S Kataoka M Takashima S Mochizuki T Ikura H Imai Y. Relation between cancer cellularity and apparent diffusion coefficient values using diffusion-weighted magnetic resonance imaging in breast cancer. Radiat Med 2008; 26:222-226.

  • Bogner W Gruber S Pinker K Grabner G Stadlbauer A Weber M Moser E Helbich TH Trattnig S. Diffusion-weighted MR for Differentiation of Breast Lesions at 3.0 T: How Does Selection of Diffusion Protocols Affect Diagnosis? Radiology 2009; 253: 341-351.

  • Woodhams R Kakita S Hata H Iwabuchi K Kuranami M Gautam S Hatabu H Kan H Mountford C. Identification of Residual Breast Carcinoma Following Neoadjuvant Chemotherapy: Diffusion -weighted Imaging - Comparison with Contrast-enhanced MR Imaging and Pathologic Findings. Radiology 2010; 254: 358-366.

  • Pereira FPA Martins G Figueiredo E Domingues MNA Domingues RC da Fonseca LMB. The use of diffusion- weighted magnetic resonance imaging in the differentiation between benign and malignant breast lesions. Radiologia Brasileira 2009; 42: 283 - 288.

Journal information
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 308 177 1
PDF Downloads 111 75 1