Structural and Optoelectronic Properties of Zinc Sulfide Thin Films Synthesized by Co-Precipitation Method


Wide bandgap Zinc Sulfide nanocrystals are prepared by a simple co-precipitation method at different precursor concentrations. The influence of sulphur concentration in Zinc sulfide on morphological, optical and electric properties is found to be significant. The Zinc Sulfide nanomaterial was prepared using low-cost starting materials and deionised water as the solvent. As synthesized Zinc Sulfide nanocrystals were analyzed using X-ray diffraction (XRD), Energy Dispersive Spectroscopy (EDS) analysis, UV-Visible Spectrophotometry, Photoluminescence (PL), Scanning electron Microscopy (SEM), Ellipsometry techniques and electric conductivity measurements. XRD patterns revealed that ZnS nanocrystals are polycrystalline, cubic phase with (111) preferred orientation. The obtained crystallites have sizes in the range of 5 to 11 nm. EDS pattern confirms the purity of the films. From optical absorption measurements, it is clear that the direct energy gap decreases from 5.2 to 4.4eV with the increase in sulphur concentration in ZnS and exhibit large quantum confinement effect. Ellipsometry was used to determine the optical constants and film thickness. The films deposited on ITO – coated glass was used to record the IV Characteristics of the films by two probe method. The wide-bandgap, conducting materials have applications in optoelectronic devices such as high-frequency UV detectors and thin-film solar cells.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Sarute, U.; Yingyot, I. A comprehensive review on ZnS: From synthesis to an approach on solar cell, Renew. Sust. Energ. Rev. 2016, 55, 17-24.

  • 2. Konstantatos, G.; Sargent, E. H. Colloidal Quantum Dot Optoelectronics and Photovoltaics, Cambridge University Press, UK, 2013.

  • 3. Fang, X.; Zhai, T.; Gautam, U. K.; Li,L.; Wu, L.; Bando, Y.; Golberg, D. ZnS nanostructures: From synthesis to applications. Prog. Mater. Sci. 2011, 56, 175-287.

  • 4. Fang, X.; Bando, Y.; Gautam, U. K.; Zhai, T.; Zeng, H.; Xu, X.; Liao, M.; Golberg, D. ZnO and ZnS Nanostructures: Ultraviolet-Light Emitters, Lasers and Sensors. Crit. Rev. Solid State Sci. 2009, 34, 190-223.

  • 5. Ates, A.; Yildirım, M. Ali.; Kundakci, M.; Astam, A. Annealing and light effect on optical and electrical properties of ZnS thin films grown with the SILAR method. Mater. Sci. Semicond. Process. 2007, 10, 281-286.

  • 6. Gangopadhyay, U.; Kim, K.; Mangalaraj, D.; Yi, J. Low-cost CBD ZnS antireflection coating on large area commercial mono-crystalline silicon solar cells. Appl. Surf. Sci. 2004, 230, 364-370.

  • 7. Bindu, K. R.; Sreenivasan, P. V.; Martinez, A. I.; Anila, E. I. a-Axis oriented ZnS thin film synthesised by dip-coating method. J. Sol-Gel Sci. Technol. 2013, 68, 351-355.

  • 8. Ummartyotin, S.; Bunnak, N.; Juntaro, J.; Sain, M.; Manuspiya, H. Synthesis and luminescence properties of ZnS and metal (Mn, Cu)-doped-ZnS ceramic powder. Solid State Sci. 2012, 14, 299-304.

  • 9. Goktas, A.; Aslan, F.; Yasar, E.; Mutlu, I. H. Preparation and characterisation of thickness-dependent nano-structured ZnS thin films by sol-gel technique. J. Mater. Sci.: Mater. Electron. 2012, 23, 1361.

  • 10. Firoozifar, S. A. R.; Behjat. A.; Kadivar, E.; Ghorashia, S. M. B.; Zarandia, M. B. A study of the optical properties and adhesion of zinc sulfide anti-reflection thin film coated on a germanium substrate. Appl. Surf. Sci. 2011, 258, 818-821.

  • 11. Tec-Yam, S.; Rojas, J.; Rejon, V.; Oliva, A. I. High-quality anti-reflective ZnS thin films prepared by chemical bath deposition. Mater. Chem. Phys. 2012, 136, 386-393.

  • 12. Yoo, D.; Choi, M. S.; Heo, S. C.; Chung, C.; Kim, D.; Choi, C. Structural, Optical and Chemical Analysis of Zinc Sulfide Thin Film Deposited by RF-Magnetron Sputtering and Post Deposition Annealing. Met. Mater. Int. 2013, 19, 1309-1316.

  • 13. Kole, A. K.; Kumbhakar, P. Cubic-to-hexagonal phase transition and optical properties of chemically synthesized ZnS nanocrystals. Results Phys. 2012, 2, 150-155.

  • 14. Saleem, M.; Fang, L.; Wakeel, A.; Rashad, M.; Kong, C. Y. Simple Preparation and Characterization of Nano-Crystalline Zinc Oxide Thin Films by Sol-Gel Method on Glass Substrate. World J. Condens. Matter. Phys. 2012, 2, 10-15.

  • 15. Lewis, A. E. Review of metal sulphide precipitation. Hydrometallurgy 2010, 104, 222-234.

  • 16. Hoa, T. T. Q.; Vu, L. V.; Canh, T. D.; Long, N. N. Preparation of ZnS nanoparticles by hydrothermal method. Phys.: J. Phy. Conf. Ser. 2009, 187, 012081.

  • 17. Haque, F.; Rahman, K. S.; Islam, M. A.; Rashid, M. J.; Akhtaruzzaman, M.; Alam, M. M.; Alothman, Z. A.; Sopian, K.; Amin, N. Growth optimization of ZnS thin films by rf magnetron sputtering as prospective buffer layer in thin-film solar cells. Chalcogenide Lett. 2014, 11, 189-197.

  • 18. Denzler, D.; Olschewski, M.; Sattler, K. Luminescence studies of localized gap states in colloidal ZnS nanocrystals. J. Appl. Phys. 1998, 84, 2841-2845.


Journal + Issues