Cinnamyl-Imine-Chitosan Hydrogels. Morphology Control

Open access


The study deals with the exploration of the possibilities to control the morphology of cinnamyl-imine-chitosan hydrogels in view of their bio-application. Three series of hydrogels were synthetized from chitosan of three different molecular weights and cinnamaldehyde, varying the molar ratio between the amine groups on chitosan and aldehyde functional groups. The hydrogel morphology has been monitored by scanning electron microscopy. The variation of the hydrogel morphology as a function of chitosan molecular weight, crosslinking degree, and incubation conditions has been monitored. It was concluded that there are multiple possibilities of tuning the morphology of these hydrogels in function of the targeted application.

1. Pella, M.C.G.; Lima-Tenorio, M.K.; Tenorio-Neto, E.T.; Guilherme, M.R.; Muniz, E.C.; Rubira, A.F. Chitosan-based hydrogels: From preparation to biomedical applications. Carbohydr. Polym. 2018, 196, 233-245.

2. Bugnicourt, L.; Peers, S.; Dalverny, C.; Ladavière, C. Tunable morphology of lipid/chitosan particle assemblies. J. Colloid Interface Sci. 2019, 534, 105-109.

3. Chabbi, J.; Jennah, O.; Katir, N.; Lahcini, M.; Bousmina, M.; El Kadib, A. Aldehyde-functionalized chitosan-montmorillonite films as dynamically-assembled, switchable-chemical release bioplastics. Carbohydr. Polym. 2018, 183, 287-293.

4. Marin, L.; Ailincai, D.; Mares, M.; Paslaru, E.; Cristea, M.; Nica, V.; Simionescu, B.C. Imino-chitosan biopolymeric films. Obtaining, self-assembling, surface and antimicrobial properties. Carbohydr. Polym. 2015, 117, 762-770.

5. Rahimi, S.; Khoee, S.; Ghandi, M. Development of photo and pH dual crosslinked coumarin-containing chitosan nanoparticles for controlled drug release. Carbohydr. Polym. 2018, 201, 236-245.

6. Pakdel, P.M.; Peighambardoust, S.J. Review on recent progress in chitosan-based hydrogels for wastewater treatment application. Carbohydr. Polym. 2018, 201, 264-279.

7. Beauchamp, R.O.; St Clair, M.B.; Fennell, T.R.; Clarke, D.O.; Morgan, K.T. A critical review of the toxicology of glutaraldehyde. Crit. Rev. Toxicol. 1992, 22, 143-174.

8. Marin, L.; Moraru, S.; Popescu, M.C.; Nicolescu, A.; Zgardan, C.; Simionescu, B.C.; Barboiu, M. Out-of-Water Constitutional Self-Organization of Chitosan–Cinnamaldehyde Dynagels. Chem. Eur. J. 2014, 20, 4814-4821.

9. Olaru, A.M.; Marin, L.; Morariu, S.; Pricope, G.; Pinteala, M.; Tartau-Mititelu, L. Biocompatible chitosan based hydrogels for potential application in local tumor therapy. Carbohydr. Polym. 2018, 179, 59-70.

10. Marin, L.; Ailincai, D.; Morariu, S.; Tartau-Mititelu, L. Development of biocompatible glycodynameric hydrogels joining two natural motifs by dynamic constitutional chemistry. Carbohydr. Polym. 2017, 170, 60-71.

11. Iftime, M.; Morariu, S.; Marin, L. Salicyl-imine-chitosan hydrogels: Supramolecular architecturing as acrosslinking method toward multifunctional hydrogels. Carbohydr. Polym. 2017, 165, 39-50.

12. Ailincai, D.; Marin, L.; Morariu, S.; Mares, M.; Bostanaru, A.C.; Pinteala, M.; Simionescu, B.C.; Barboiu, M. Dual crosslinked iminoboronate-chitosan hydrogels with strongantifungal activity against Candida planktonic yeasts and biofilms. Carbohydr. Polym. 2016, 152, 306-316.

13. Bejan, A.; Ailincai, D.; Simionescu, B.C.; Marin, L. Chitosan Hydrogelation with a Phenothiazine based Aldehyde – a Synthetic Approach toward Highly Luminescent Biomaterials. Polym. Chem. 2018, 9, 2359-2369.

14. Iftime, M.M.; Marin, L. Chiral betulin-imino-chitosan hydrogels by dynamic covalent sonochemistry. Ultrason. Sonochem. 2018, 45, 238-247.

15. Ailincai, D.; Mititelu Tartau, L.; Marin, L. Drug delivery systems based on biocompatible imino-chitosan hydrogels for local anticancer therapy. Drug Deliv. 2018, 25, 1080-1090.

16. Hamedi, H.; Moradi, S.; Hudson, S.M.; Tonelli, A.E. Chitosan based hydrogels and their applications for drug delivery in wound dressings: A review. Carbohydr. Polym. 2018, 199, 445-460.

17. Miras, J.; Vílchez, S.; Solans, C.; Esquena, J. Chitosan macroporous foams obtained in highly concentrated emulsions as templates, J. Colloid Interface Sci. 2013, 410, 33-42.

18. Rotaru, A.; Cojocaru, C.; Cretescu, I.; Pinteala, M.; Timpu, D.; Sacarescu, L.; Harabagiu, V. Performances of clay aerogel polymer composites for oil spill sorption: Experimental design and modelling. Sep. Purif. Technol. 2014, 133, 260-275.

19. Chen, Y.; Ma, P.; Gui, S. Cubic and Hexagonal Liquid Crystals as Drug Delivery Systems, BioMed Res. Int. 2014, Article ID 815981, 12 pages.

20. Loh, Q.L.; Choong, C. Three-dimensional Scaffolds for Tissue Engineering Applications: Role of Porosity and Pore Size. Tissue Eng. Part B Rev. 2013, 19, 485–502.

21. Annabi, N.; Nichol, J.W.; Zhong, X.; Ji, C.; Koshy, S.; Khademhosseini, A.; Dehghani, F. Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng. Part B Rev. 2010, 16, 371-383.

22. Marin, L.; Popescu, M.C.; Zabulica, A.; Uji, H.; Fron, E. Chitosan as matrix for bio-polymer dispersed liquid crystal systems. Carbohydr. Polym. 2013, 95, 16-24.

23. Fifere, A.; Marangoci, N.; Maier, S.; Coroaba, A.; Maftei, D.; Pinteala, M. Theoretical study on β-cyclodextrin inclusion complexes with propiconazole and protonated propiconazole. Beilstein J. Org. Chem. 2012, 8, 2191-2201.

Acta Chemica Iasi

The Journal of "Alexandru Ioan Cuza" University from Iasi

Journal Information


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 41 41 34
PDF Downloads 29 29 22