Impact of Thiocyanate on the Catecholase Activity of Cu(II) and Fe(III) Complexes of 2-((4-(2-Hydroxy-4-Methylbenzyl)Piperazin-1-YL)Methyl)-5-Methylphenol (A Mannich Base)

Open access


Four metal complexes viz Cu(II) and Fe(III) with or without thiocyanate have been synthesized from a Mannich base prepared by a simple synthetic route. These complexes were characterized by elemental and spectroscopic techniques. Bonding modes of the thiocyanate group with the metal complexes as studied by infrared spectroscopy revealed the presence of bridging N- and S- bonding modes. Detailed kinetic studies of these complexes were carried in the evaluation of their catecholase activity. The Fe(III) complex demonstrated the highest catalytic activity using 3,5-di-tert-butyl catechol (3,5-DTBC) as substrate with a turnover rate (kcat) of 112.32 h−1.

1. Roman, G., Mannich bases in medicinal chemistry and drug design. Eur. J. Med. Chem. 2015, 89, 743 - 816.

2. Sanyal, R.; Kundu, P.; Rychagova, E.; Zhigulin, G.; Ketkov, S.; Ghosh, B.; Chattopadhyay, S. K.; Zangrando, E.; Das, D. Catecholase activity of Mannich-based dinuclear CuII complexes with theoretical modelling: new insight into the solvent role in the catalytic cycle. New J. Chem. 2016, 40, 6623 - 6635.

3. Ayeni, A. O.; Egharevba, G. O. Studies of some morpholine- and methylpiperazin-1-yl Mannich ligands and their Cu(II) and Ni(II) complexes. Ife J. Sci. 2015, 17, 685 - 694.

4. Bharathi, K. S.; Sreedaran, S.; Priya, P. H.; Rahiman, A. K.; Rajesh, K.; Jagadish, L.; Kaviyarasan, V.; Narayanan, V. Synthesis of new unsymmetrical “end-off” phenoxo bridged copper(II), nickel(II) and zinc(II) complexes: spectral, magnetic, electrochemical, catalytic, and antimicrobial studies. J. Coord. Chem. 2009, 62, 1356 - 1372.

5. Cary, J. W.; Lax, A. R.; Flurkey, W. H. Cloning and characterization of cDNAs coding for Vicia faba polyphenol oxidase. Plant Mol. Biol. 1992, 20, 245 - 253.

6. Deverall, B. J. Phenolase and pectic enzyme activity in the chocolate spot disease of beans. Nature 1961, 189, 311 - 315.

7. Neves, A.; Rossi, L. M.; Bortoluzzi, A. J.; Szpoganicz, B.; Wiezbicki, C.; Schwingel, E.; Haase, W.; Ostrovsky, S. Catecholase Activity of a Series of Dicopper(II) Complexes with Variable Cu−OH(phenol) Moieties. Inorg. Chem. 2002, 41, 1788 - 1799.

8. Mukherjee, J.; Mukherjee, R. N. Catecholase activity of dinuclear copper(II) complexes with variable endogenous and exogenous bridge. Inorg. Chim. Acta 2002, 337, 429 - 438.

9. Biswas, A.; Das, L. K.; Drew, M. G. B.; Diaz, C.; Ghosh, A. Insertion of a Hydroxido Bridge into a Diphenoxido Dinuclear Copper(II) Complex: Drastic Change of the Magnetic Property from Strong Antiferromagnetic to Ferromagnetic and Enhancement in the Catecholase Activity. Inorg. Chem. 2012, 51, 10111 - 10121.

10. Anbu, S.; Kandaswamy, M. Electrochemical, magnetic, catalytic, DNA binding and cleavage studies of new mono and binuclear copper(II) complexes. Polyhedron 2011, 30, 123 - 131.

11. Ali, I.; Wani, W. A.; Saleem, K. Empirical Formulae to Molecular Structures of Metal Complexes by Molar Conductance. Synth. React. Inorg. Met-Org. Nano-Metal Chem. 2013, 43, 1162 - 1170.

12. Brycki, B.; Maciejewska, H.; Brzezinski, B.; Zundel, G. Preparation and NMR characterization of hydrogen bonding in 2- and 2,6-bis- (N,N-diethylaminomethyl) - 4R-phenols. J. Mol. Struct. 1991, 246, 61 – 71.

13. Koll, A.; Wolschann, P. Empirical Formulae to Molecular Structures of Metal Complexes by Molar Conductance. Monatshefte fur Chemie 1996, 127, 475 - 486.

14. Pothiraj, K.; Baskaran, T.; Raman, N. DNA interaction studies of d9 and d10 metal complexes having Schiff base and polypyridyl ligands. J. Coord. Chem. 2012, 65, 2110 - 2126.

15. I. Bhat, S. Tabassum, Synthesis of new piperazine derived Cu(II)/Zn(II) metal complexes, their DNA binding studies, electrochemistry and anti-microbial activity: Validation for specific recognition of Zn(II) complex to DNA helix by interaction with thymine base. Spectrochim. Acta A. 2009, 72, 1026 - 1033.

16. Cretu, C.; Tudose, R.; Cseh, L.; Linert, W.; Halevas, E.; Hatzidimitriou, A.; Costisor, O.; Salifoglou, A. Schiff base coordination flexibility toward binary cobalt and ternary zinc complex assemblies. The case of the hexadentate ligand N, N’-bis[(2-hydroxybenzilideneamino)-propyl]-piperazine. Polyhedron 2015, 85, 48 - 59.

17. Kabesova, M.; Gazo, J. Structure and classification of thiocyanates and the mutual influence of their ligands. Chem. Zvesti, 1980, 34, 800 - 841.

18. Bhowmik, P.; Chattopadhyay, S.; Drew, M.G.B.; Diaz, C.; Ghosh, A. Synthesis, structure and magnetic properties of mono- and di-nuclear nickel(II) thiocyanate complexes with tridentate N3 donor Schiff bases. Polyhedron 2010, 29, 2637 - 2642.

19. Al-Jeboori, M. J.; Abdul-Ghani, A. J.; Al-Karawi, A. J. Synthesis and structural studies of new Mannich base ligands and their metal complexes. Transition Met. Chem. 2008, 33, 925 - 930.

20. Kabesova, M.; Kohout, J.; Gazo, J. Influence of methyl- and dimethyl substituted pyridines as ligands on the structure and the electron transfer in thiocyanato-copper(II) complexes. Monatsh. Chem. 1976, 107, 641 - 651.

21. Ray, M.; Ghosh, D.; Shirin, Z.; Mukherjee, R. Highly Stabilized Low-Spin Iron(III) and Cobalt(III) Complexes of a Tridentate Bis-Amide Ligand 2,6- Bis(N-phenylcarbamoyl)pyridine. Novel Nonmacrocyclic Tetraamido-N Coordination and Two Unusually Short Metal Pyridine Bonds. Inorg. Chem. 1997, 36, 3568 - 3572.

22. Koval, I. A.; Belle, C.; Selmeczi, K.; Philouze, C.; Saint-Aman, E.; Schuitema, A. M.; Gamez, P. Jean-Louis P.; Reedijk, J. Catecholase activity of a l-hydroxodicopper(II) macrocyclic complex: structures, intermediates and reaction mechanism. J. Biol. Inorg. Chem. 2005, 10, 739 - 750.

23. Belle, C.; Beguin, C.; Gautier-Luneau, I.; Hamman, S.; Philouze, C.; Pierre, J. L.; Thomas, F.; Torelli, S. Dicopper(II) Complexes of H-BPMP-Type Ligands: pH-Induced Changes of Redox, Spectroscopic (19F NMR Studies of Fluorinated Complexes), Structural Properties, and Catecholase Activities. Inorg. Chem. 2002, 41, 479 – 491.

24. Neves, A.; Bortoluzzi, A. J.; Jovito, R.; Peralta, R. A.; de Souza, B.; Szpoganicz, B.; Joussef, A. C.; Terenzi, H.; Severino, P. C.; Fischer, F. L.; Schenk, G.; Riley, M. J.; Smith, S. J.; Gahan, L. R. Catalytic Promiscuity: Catecholase-like Activity and Hydrolytic DNA Cleavage Promoted by a Mixed-Valence FeIIIFeII Complex. J. Braz. Chem. Soc. 2010, 21, 1201 - 1212.

25. Bhardwaj, V. K.; Aliaga-Alcalde, N.; Corbella, M.; Hundal, G. Synthesis, crystal structure, spectral and magnetic studies and catecholase activity of copper(II) complexes with di- and tri-podal ligands. Inorganica Chim. Acta 2010, 363, 97 - 106.

26. Das, L. K.; Biswas, A.; Kinyon, J. S.; Dalal, N. S.; Zhou, H.; Ghosh, A. Di-, Tri-, and Tetranuclear Nickel(II) Complexes with Oximato Bridges: Magnetism and Catecholase-like Activity of Two Tetranuclear Complexes Possessing Rhombic Topology. Inorg. Chem. 2013, 52, 11744 - 11757.

27. Panja, A. Syntheses and structural characterizations of cobalt(II) complexes with N4-donor Schiff base ligands: Influence of methyl substitution on structural parameters and on phenoxazinone synthase activity. Polyhedron 2014, 80, 81 - 89.

28. Ramadan, A.E.M.; Shaban, S. Y.; Ibrahim, M. M. Synthesis, characterization, and ascorbic acid oxidase biomimetic catalytic activity of cobalt (III) oxime complexes. J. Coord. Chem. 2011, 64, 3376 - 3392.

Acta Chemica Iasi

The Journal of "Alexandru Ioan Cuza" University from Iasi

Journal Information


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 75 75 14
PDF Downloads 55 55 9