Synthesis, Structural and Electrical Studies of Li-Ni-Cu Nano Ferrites

Open access

Abstract

Li-Ni ferrite has gained great scientific elicit owing to of its unparalleled properties and applications. The copper doped Li-Ni ferrite has been synthesized by sucrose method. The structure was characterized by X-ray diffraction, which has confirmed the formation of single-phase spinel structure. X-ray diffraction and FTIR data reveals the formation of cubic structure phase. Unit cell parameters vary with copper content; overall variation of the unit cell parameters obeys Vegard’s law. The main absorption bands of spinel ferrite have appeared through IR absorption spectra recorded in the range of 300–700 cm−1. The copper concentration dependence of lattice parameters obeys Vegard’s law. DC electrical resistivity of the prepared samples decreases with increasing in the temperature which shows the semiconducting behaviour of all nano ferrites. The most prominent influence copper doping on the electrical properties of Li-Ni ferrites has been reported.

1. Praveena, K.; Sadhana, K.; Bharadwaj, S.; Murthy, S.R. Development of nanocrystalline Mn–Zn ferrites for high frequency transformer applications. J. Magn. Magn. Mater. 2009, 321, 2433-2437.

2. Verma, A.; Alam, M.I.; Chatterjee, R.; Goel, T.C.; Mendiratta, R.G. Development of a new soft ferrite core for power applications. J. Magn. Magn. Mater. 2006, 300, 500-505.

3. Papazoglou, P.; Eleftheriou, E.; Zaspalis, V.T. Low sintering temperature MnZn-ferrites for power applications in the frequency region of 400 kHz. J. Magn. Magn. Mater. 2006, 296, 25-31.

4. Salunkhe, A.B.; Khot, V.M.; Thorat, N.D.; Phadatare, M.R.; Sathish, C.I.; Dhawale, D.S.; Pawar, S.H. Polyvinyl alcohol functionalized cobalt ferrite nanoparticles for biomedical applications. Appl. Surf. Sci. 2013, 264, 598-604.

5. Fresno, F.; Fernández-Saavedra, R.; Gómez-Mancebo, M.B.; Vidal, A.; Sánchez, M.; Rucandio, M.I.; Quejido, A.J.; Romero, M. Solar hydrogen production by two-step thermochemical cycles: Evaluation of the activity of commercial ferrites. Int. J. Hydrogen Energy 2009, 34, 2918-2924.

6. Kaneko, H.; Yokoyama, T.; Fuse, A.; Ishihara, H.; Hasegawa, N.; Tamaura, Y. Synthesis of new ferrite, Al-Cu ferrite, and its oxygen deficiency for solar H2 generation from H2O. Int. J. Hydrogen Energy 2006, 31, 2256-2265.

7. Dionne, G.F. Molecular-fielf coefficients of Ti4+ and Zn2+ substituted lithium ferrites. J. Appl. Phys. 1974, 45, 3621-3626.

8. Jadhav, S.A. Magnetic properties of Zn-substituted Li–Cu ferrites. J. Magn. Magn. Mater. 2001, 224, 167-172.

9. Al-Hilli, M.F.; Li, S.; Kassim, K.S. Gadolinium substitution and sintering temperature dependent electronic properties of Li-Ni ferrite. J. Magn. Magn. Mater. 2012, 324, 873–879.

10. Elata, A.M.A.; Attia, S.M.; Elkony, D.; Al-Hammadi, A.H. Spectral, initial magnetic permeability and transport studies of Li0.5−0.5xCoxFe2.5−0.5xO4 spinel ferrite. J. Magn. Magn. Mater. 2005, 295, 28–36.

11. Sattar, A.A.; El-Sayed, H.M.; Agami, W.R.; Ghani, A.A. Magnetic properties and electrical resistivity of Zr4+ substituted Li-Zn Ferrite. Am. J. Appl. Sci. 2007, 4, 89-93.

12. Sepelak, V.; Bergmann, I.; Feldhoff, M.A.; Litterst, F.J.; Becker, K.D.; Cadogan, J.M.; Hofmann, M.; Hoelzel, M.; Wang, J.L.; Avdeev, M.; Campbell, S.J. Mechanosynthesis of nanocrystalline MgFe2O4: Neutron diffraction and Mössbauer spectroscopy. Hyperfine Interact., 2010, 198, 67–71.

13. Berchmans, L.J.; Selvan, R.K.; Kumar, P.N.S.; Augustin, C.O. Structural and electrical properties of Ni1–xMgxFe2O4 synthesized by citrate gel process. J.Magn. Magn. Mater. 2004, 279, 103–110.

14. Iqbal, M.J.; Ahmad, Z.; Melikhov, Y.; Niebedim, I.C. Temperature and composition dependence of magnetic properties of cobalt–chromium co-substituted magnesium ferrite nanomaterials. J. Magn. Magn. Mater. 2012, 324, 3986–3990.

15. Rendale, M.K.; Mathad, S.N.; Puri, V. Structural, mechanical and elastic properties of Ni0.7−xCoxZn0.3Fe2O4nano-ferrite thick films. Microelectron. Intern. 2017, 34, 57-63.

16. Yattinahalli, S.S.; Kapatkar, S.B.; Mathad, S.N. Structural and mechanical properties of a nano ferrite. Adv. Sci. Focus, 2014, 2, 42–46.

17. Patil, M.R.; Rendale, M.K.; Mathad. S.N.; Pujar, R.B. Structural and IR study of Ni0.5–XCdXZn0.5Fe2O4. Int. J. Self-Propag. High-Temp. Synth. 2015, 24, 241–245.

18. Pathan, A.T.; Mathad, S.N.; Shaikh, A.M. Infrared Spectral studies of Co2+ substituted Li-Ni-Zn Nano-structured Ferrites. Int. J. Self-Propag. High-Temp. Synth. 2014, 23, 112–117.

19. Singh, N.; Agarwal, A.; Sanghi, S.; Singh, P. Synthesis, microstructure, dielectric and magnetic properties of Cu substituted Ni–Li ferrites, J. Magn. Magn. Mater., 2011, 323, 486–492.

20. Aravind, G.; Raghasudha, M.; Ravinder, D. Electrical transport properties of nano crystalline Li–Ni ferrites. J. Materiomics, 2015, 1, 348–356.

21. Aravind, G.; Ravinder, D.; Nathanial, V. Structural and Electrical Properties of Li–Ni Nanoferrites Synthesised by Citrate Gel Autocombustion Method. Phys. Res. Intern. 2014, Article ID 672739.

Acta Chemica Iasi

The Journal of "Alexandru Ioan Cuza" University from Iasi

Journal Information

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 100 100 34
PDF Downloads 79 79 35