Minimum Reinforcement for Crack Width Control in RC Tensile Elements

Abstract

New approach using direct crack width calculations of the minimum reinforcement in tensile RC elements is presented. Verification involves checking whether the provided reinforcement ensures that the crack width that may result from the thermal-shrinkage effects does not exceed the limit value. The Eurocode provisions were enriched with addendums derived from the German national annex. Three levels of accuracy of the analysis were defined - the higher the level applied, the more significant reduction in the amount of reinforcement required can be achieved. A methodology of determining the minimum reinforcement for crack width control on the example of a RC retaining wall is presented. In the analysis the influence of residual and restraint stresses caused by hydration heat release and shrinkage was considered.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. K. Flaga, B. Klemczak, “Konstrukcyjne i technologiczne aspekty naprężeń termiczno-skurczowych w masywnych i średniomasywnych konstrukcjach betonowych”, 2016.

  • 2. W. Kiernożycki, “Betonowe konstrukcje masywne: teoria, wymiarowanie, realizacja”, Polski Cement, 2003.

  • 3. M. Knauff, B. Grzeszykowski, A. Golubińska, “Przykłady obliczania konstrukcji żelbetowych. Zeszyt 3. Zarysowanie”, Warszawa, PWN, 2018.

  • 4. ACI Committee, “Prediction of Creep, Shrinkage, and Temperature Effects in Concrete Structures”, 1982.

  • 5. CEN, EN 1992-1-1:2008 - Eurocode 2, Design of concrete structures - Part 1-1 : General rules and rules for buildings, 2008.

  • 6. DIN, EN 1992-1-1/NA, Nationaler Anhang – National festgelegte Parameter – Eurocode 2: Bemessung und Konstruktion von Stahlbeton und Spannbetontragwerken – Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau, 2011.

  • 7. A. Muttoni, R. M. Fernández, “Concrete cracking in tension members and application to deck slabs of bridges”, Journal of Bridge Engineering, 12(5): pp 646-653, 2007.

  • 8. M. Nobuhiro, U. Kazuo, “Nonlinear thermal stress analysis of a massive concrete structure”, Computers & Structures, 26(1-2): pp 287-296, 1987.

  • 9. Portland Cement Association, “Portland cement, concrete, and heat of hydration”, Concrete Technology Today, 18(2): p. 1-4, 1997.

  • 10. J. K. Kim, H. K. Kim, J. K. Yang, “Thermal analysis of hydration heat in concrete structures with pipe-cooling system”, Computers & Structures, 79(2): pp 163-171, 2001.

  • 11. K. B. Park, N. Y. Jee, I. S. Yoon, H. S. Lee, “Prediction of temperature distribution in high-strength concrete using hydration model”, ACI Materials Journal, 105(2): pp 180, 2008.

  • 12. Z. Yunchuan, B. Liang, Y. Shengyuan, C. Guting, “Simulation analysis of mass concrete temperature field”, Procedia Earth and Planetary Science, 5: pp 5-12, 2012.

  • 13. B. Kuriakose, B. N. Rao, G. R. Dodagoudar, “Early-age temperature distribution in a massive concrete foundation”, Procedia Technology, 25: pp 107-114, 2016.

  • 14. J. K. Kim, C. S. Lee, “Prediction of differential drying shrinkage in concrete”, Cement and Concrete Research, 28(7): pp 985-994, 1998.

  • 15. C. de Sa, F. Benboudjema, M. Thiery, J. Sicard, “Analysis of microcracking induced by differential drying shrinkage”, Cement and Concrete Composites, 30(10): pp 947-956, 2008.

  • 16. H. Samouh, E. Rozière, A. Loukili, “The differential drying shrinkage effect on the concrete surface damage: Experimental and numerical study”, Cement and Concrete Research, 102: pp 212-224, 2017.

  • 17. J. Bödefeld, “Rissmechanik in dicken Stahlbetonbauteilen bei abfließender Hydratationswärme”, Beiträge zum Doktorandensymposium 2010-51, Forschungskolloquium, Beton-Werkstoff der Superlative, 11.-12: pp 757-768, 2010.

  • 18. B. Klemczak, “Modeling thermal-shrinkage stresses in early age massive concrete structures–Comparative study of basic models”, Archives of Civil and Mechanical Engineering, 14(4): pp 721-733, 2014.

  • 19. D. Schlicke, N. V. Tue, “Minimum reinforcement for crack width control in restrained concrete members considering the deformation compatibility”, Structural Concrete, 16(2): pp 221-232, 2015.

  • 20. H. Sasano, I. Maruyama, A. Nakamura, Y. Yamamoto, M. Teshigawara, “Impact of Drying on Structural Performance of Reinforced Concrete Shear Walls”, Journal of Advanced Concrete Technology, 16(5): pp 210-232, 2018.

  • 21. ACI Committee, “Effect of Restraint, Volume Change, and Reinforcement on Cracking of Mass Concrete”, ACI Manual of Concrete Practice, 2002.

OPEN ACCESS

Journal + Issues

Search