Minimum Reinforcement for Crack Width Control in RC Tensile Elements

Open access

Abstract

New approach using direct crack width calculations of the minimum reinforcement in tensile RC elements is presented. Verification involves checking whether the provided reinforcement ensures that the crack width that may result from the thermal-shrinkage effects does not exceed the limit value. The Eurocode provisions were enriched with addendums derived from the German national annex. Three levels of accuracy of the analysis were defined - the higher the level applied, the more significant reduction in the amount of reinforcement required can be achieved. A methodology of determining the minimum reinforcement for crack width control on the example of a RC retaining wall is presented. In the analysis the influence of residual and restraint stresses caused by hydration heat release and shrinkage was considered.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. K. Flaga B. Klemczak “Konstrukcyjne i technologiczne aspekty naprężeń termiczno-skurczowych w masywnych i średniomasywnych konstrukcjach betonowych” 2016.

  • 2. W. Kiernożycki “Betonowe konstrukcje masywne: teoria wymiarowanie realizacja” Polski Cement 2003.

  • 3. M. Knauff B. Grzeszykowski A. Golubińska “Przykłady obliczania konstrukcji żelbetowych. Zeszyt 3. Zarysowanie” Warszawa PWN 2018.

  • 4. ACI Committee “Prediction of Creep Shrinkage and Temperature Effects in Concrete Structures” 1982.

  • 5. CEN EN 1992-1-1:2008 - Eurocode 2 Design of concrete structures - Part 1-1 : General rules and rules for buildings 2008.

  • 6. DIN EN 1992-1-1/NA Nationaler Anhang – National festgelegte Parameter – Eurocode 2: Bemessung und Konstruktion von Stahlbeton und Spannbetontragwerken – Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau 2011.

  • 7. A. Muttoni R. M. Fernández “Concrete cracking in tension members and application to deck slabs of bridges” Journal of Bridge Engineering 12(5): pp 646-653 2007.

  • 8. M. Nobuhiro U. Kazuo “Nonlinear thermal stress analysis of a massive concrete structure” Computers & Structures 26(1-2): pp 287-296 1987.

  • 9. Portland Cement Association “Portland cement concrete and heat of hydration” Concrete Technology Today 18(2): p. 1-4 1997.

  • 10. J. K. Kim H. K. Kim J. K. Yang “Thermal analysis of hydration heat in concrete structures with pipe-cooling system” Computers & Structures 79(2): pp 163-171 2001.

  • 11. K. B. Park N. Y. Jee I. S. Yoon H. S. Lee “Prediction of temperature distribution in high-strength concrete using hydration model” ACI Materials Journal 105(2): pp 180 2008.

  • 12. Z. Yunchuan B. Liang Y. Shengyuan C. Guting “Simulation analysis of mass concrete temperature field” Procedia Earth and Planetary Science 5: pp 5-12 2012.

  • 13. B. Kuriakose B. N. Rao G. R. Dodagoudar “Early-age temperature distribution in a massive concrete foundation” Procedia Technology 25: pp 107-114 2016.

  • 14. J. K. Kim C. S. Lee “Prediction of differential drying shrinkage in concrete” Cement and Concrete Research 28(7): pp 985-994 1998.

  • 15. C. de Sa F. Benboudjema M. Thiery J. Sicard “Analysis of microcracking induced by differential drying shrinkage” Cement and Concrete Composites 30(10): pp 947-956 2008.

  • 16. H. Samouh E. Rozière A. Loukili “The differential drying shrinkage effect on the concrete surface damage: Experimental and numerical study” Cement and Concrete Research 102: pp 212-224 2017.

  • 17. J. Bödefeld “Rissmechanik in dicken Stahlbetonbauteilen bei abfließender Hydratationswärme” Beiträge zum Doktorandensymposium 2010-51 Forschungskolloquium Beton-Werkstoff der Superlative 11.-12: pp 757-768 2010.

  • 18. B. Klemczak “Modeling thermal-shrinkage stresses in early age massive concrete structures–Comparative study of basic models” Archives of Civil and Mechanical Engineering 14(4): pp 721-733 2014.

  • 19. D. Schlicke N. V. Tue “Minimum reinforcement for crack width control in restrained concrete members considering the deformation compatibility” Structural Concrete 16(2): pp 221-232 2015.

  • 20. H. Sasano I. Maruyama A. Nakamura Y. Yamamoto M. Teshigawara “Impact of Drying on Structural Performance of Reinforced Concrete Shear Walls” Journal of Advanced Concrete Technology 16(5): pp 210-232 2018.

  • 21. ACI Committee “Effect of Restraint Volume Change and Reinforcement on Cracking of Mass Concrete” ACI Manual of Concrete Practice 2002.

Search
Journal information
Impact Factor


CiteScore 2018: 0.80

SCImago Journal Rank (SJR) 2018: 0.304
Source Normalized Impact per Paper (SNIP) 2018: 0.866

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 94 94 21
PDF Downloads 72 72 10