Influence of Cable Length on the Vibrating Wire Sensors Dynamic Measurements

Open access


The hereby paper discusses the influence of cable length on the SHM systems with the use of vibrating wire dynamic measurements. Vibrating wire sensors are mainly used for measuring stable or slowly changing strains, e.g. system installed on Rędziński Bridge in Wroclaw. From some time applications of these sensors for measuring dynamic deformations are becoming popular. Such tests were conducted on STS Fryderyk Chopin. New solutions generate new problems. In this case: the operational stability of systems exciting wire vibrations. The structure of such sensors and the electric cables length has an essential influence on their operations, what is undertaken in the paper. The subject of investigations constitutes the measuring system based on self-exciting impulse exciter, for which impedance parameters of electric cables and of the vibrating wire sensor were the most essential. The mathematical model of the system, experimental verification of the model as well as the results of theoretical analyses at the application of electric cables of various lengths are presented in the paper.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. W. Barcik R. Sieńko J. Biliszczuk “System monitorowania konstrukcji mostu Rędzińskiego we Wrocławiu” Wrocław: Wrocławskie Dni Mostowe 2011.

  • 2. E Di Biagio “A case study of vibrating-wire sensors that have vibrated continuously for 27 years”. In Proc. of the 6th International Symposium on Field Measurements in Geomechanics pages 445–458 2003.

  • 3. J. Biliszczuk W. Barcik J. Onysyk et al. “Rędziński Bridge in Wrocław – the largest concretecable-stayed bridge in Poland” Structural Engineering International 24 (2) May 2014 pp. 285-292.

  • 4. G. Cieplok “A wire transducer in a system with a van der pol oscillator and velocity feedback” Nonlinear Analysis: Modelling and Control 22(4):459 – 472 2017.

  • 5. G. Cieplok “Self-exciting wire transducer for time-varying strain measurements” Journal of Dynamic Systems Measurement and Control 140(11) 2018.

  • 6. G. Cieplok Ł. Kopij “The application of self-oscillation in wire gauges” Journal of Theoretical and Applied Mechanics 55(1):29–39 2017.

  • 7. L. Fedorowicz M. Kadela “Model calibration of line construction - subsoil assisted by experimental research” AGH Journal of Mining and Geoengineering Vol. 36 no. 1:155–164 2012.

  • 8. L.E. Jacobsen S.S. Cornelsen “System and method for measuring the frequency of a vibrating object” March 18 2014. US Patent 8671758.

  • 9. L.E. Jacobsen D.L. Israelsen J.A. Swenson “Vibrating wire sensor using spectral analysis” August 24 2010. US Patent 7779690.

  • 10. M. Kadela Ł. Bednarski “Wytyczne obserwacji ciągłej obiektów zlokalizowanych na terenach górniczych” Przegląd Górniczy T. 70 nr 8:78–84 2014.

  • 11. W. Karwowski Ł. Bednarski M. Stoliński “Monitoring mostów kolejowych” Warszawa/Jachranka Seminarium IBDiM i PW Mosty Kolejowe 2013.

  • 12. W. Karwowski M. Nazarczuk K. Ulanowski et al Engineering measurements on STS Fryderyk Chopin -Internal Report STS Fryderyk Chopin Foundation Seminary Politechnika na Fali 2017.

  • 13. W. Karwowski A. Piotrowski I. Morawska K. Kosiński B. Krawczyk A. Kuk “Engineering measurements on STS Fryderyk Chopin - Internal Report” Warsaw University of Technology Seminary Politechnika na Fali 2016.

  • 14. M. Kulpa T. Siwowski “Analityczna ocena trwałości zmęczeniowej pomostu ortotropowego mostu im. Grota-Roweckiego w Warszawie” Archiwum Instytutu Inżynierii Lądowej 18/2014 Politechnika Poznańska s. 59-71.

  • 15. B. Parkasiewicz M. Kadela P. Bętkowski R. Sieńko Ł. Bednarski “Application of structure monitoring systems to the assessment of the behaviour of bridges in mining areas” IOP Conference Series: Materials Science and Engineering 245(3):032018 2017.

  • 16. T. Siwowski “Fatigue assessment of existing riveted truss bridges: case study” Bulletin of the Polish Academy of Sciences: Technical Sciences 63(1):125–133 2015.

Journal information
Impact Factor

CiteScore 2018: 0.80

SCImago Journal Rank (SJR) 2018: 0.304
Source Normalized Impact per Paper (SNIP) 2018: 0.866

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 83 83 11
PDF Downloads 71 71 10