Immobilization of selected heavy metals from fly ash from thermal treatment of municipal sewage sludge in hardening slurries

Open access


The growing number of municipal sewage treatment plants in Poland raises the problem of managing more and more sludge. The thermal treatment of municipal sewage sludge (TTMSS), which significantly reduces the volume of waste, results in an increase in the concentration of heavy metals in the fly ashes – the final products of the process. The search for methods of utilization of fly ash from TTMSS resulted in attempts to use it in hardening slurries widely used in hydro-engineering. Due to the nature of the application of this material in the cut-off walls (exposure to groundwater flow) one of the key issues is the degree of heavy metal immobilization. The paper attempted to determine the degree of leaching of selected heavy metals from the hardened hardening slurry, composed of fly ash from TTMSS. For this purpose, the eluates were prepared from samples, after various periods of curing, using a dynamic short-term method called “Batch test”. The liquid used for leaching was: distilled water and 0.1 molar EDTA solution – to determine the amount of potentially mobile heavy metal forms. The results show the possibility of the safe usage of fly ash from TTMSS as an additive for hardening slurries.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Główny Urząd Statystyczny. Ochrona Środowiska 2015. (2015)

  • 2. Falacinski P. Szarek Ł. Possible applications of hardening slurries with fly ash from thermal treatment of municipal sewage sludge in environmental protection structures. Archives of Hydro-Engineering and Environmental Mechanics. 63(1) pp. 47-61 (2016)

  • 3. Szarek Ł. Wojtkowska M. Properties of fly ash from thermal treatment of municipal sewage sludge in terms of EN 450-1. Archives of Environmental Protection Vol. 44 no. 1 pp. 62–68 (2018).

  • 4. Łukawska M. Speciation analysis of phosphorus in sewage sludge after thermal utilization of sludge. Inżynieria i Ochrona Środowiska. 17(3) pp. 433-439. (2014).

  • 5. Wojtkowska M. Falaciński P. Kosiorek A. The release of heavy metals from hardening slurries with addition of selected combustion byproducts. Inżynieria i Ochrona Środowiska. 19(4) pp. 479-491. (2016).

  • 6. Kledyński Z. Rafalski L. Zawiesiny twardniejące. Komitet Inżynierii Lądowej i Wodnej PAN Warsaw. (2009).

  • 7. MPWiK (18.12.2017).

  • 8. EN 12457-4:2002 Characterisation of waste – Leaching – Compatibility test on leaching of granular waste materials and sludges. Part 4: Single-stage batch testing with a ratio of the liquid to 10l/kg solid phase in case of materials with particle sizes of less than 10 mm (with or without the size reduction). (2002).

  • 9. Mizerna K. & Król A. Wpływ wybranych czynników na wymywalność metali ciężkich z odpadu hutniczego. Inżynieria Ekologiczna. (2015).

  • 10. Karczewska A. Metale ciężkie w glebach zanieczyszczonych emisjami hut miedzi - formy i rozpuszczalność. Zeszyty Naukowe Akademii Rolniczej we Wrocławiu 432 pp. 1-159. (2002).

  • 11. Alvarez J. M. Lopez-Valdivia L. M. Novillo J. Obrador A. Rico M. I. Comparison of EDTA and sequential extraction tests for phytoavailability prediction of manganese and zinc in agricultural alkaline soils. Geoderma. 132(3). pp. 450-463. (2006).

  • 12. Li Z. Shuman L. M. Redistribution of forms of zinc cadmium and nickel in soils treated with EDTA. Science of the Total Environment. 191(1). pp. 95-107. (1996).

  • 13. EN ISO 15586:2003 Water quality – Determination of trace elements using atomic absorption spectrometry with a graphite furnace (2003).

  • 14. Wojtkowska M. Rola specjacji w ocenie mobilności metali ciężkich w płynących wodach powierzchniowych. Prace Naukowe Politechniki Warszawskiej. Inżynieria Środowiska. (62). pp. 3-119. (2013).

  • 15. Van der Sloot H. A. Dijkstra J. J. Development of horizontally standardized leaching tests for construction materials: a material based or release based approach? Identical leaching mechanisms for different materials. Energy Research Centre of the Netherlands Report No. ECN-C-04-060 44 pp. & annexes. (2004).

  • 16. Van der Sloot H. A. Van Zomeren A. Meeussen J. C. L. Hoede D. Rietra R. P. J. J. Stenger R. Lerat A. Environmental Criteria for Cement Based Products Phase I : Ordinary Portland Cement Phase II : Blended Cements and methodology for impact assessment. Energy Research Centre of the Netherlands Report No. ECN-E--11-020 136pp. & annexes.(2011).

  • 17. Dijkstra J. J. Van der Sloot H. A. Spanka G. Thielen G. How to judge release of dangerous substances from construction products to soil and groundwater. ECNC-05-045. (2005).

  • 18. Dijkstra J. J. Van der Sloot H. A. Comans R. N. The leaching of major and trace elements from MSWI bottom ash as a function of pH and time. Applied Geochemistry. 21(2) pp. 335-351. (2006).

  • 19. Król A. Uwalnianie metali ciężkich z kompozytów mineralnych z uwzględnieniem oddziaływania środowiska]. Wydawnictwo Politechniki Opolskiej Opole. (2012).

  • 20. Kledyński Z. Wojtkowska M. Falaciński P. Szarek Ł. Immobilizacja metali ciężkich w zawiesinach twardniejących z popiołami z termicznego przekształcania komunalnych osadów ściekowych w świetle dynamicznych badań krótkoterminowych. Prace Instytutu Ceramiki i Materiałów Budowlanych No. 30. pp. 79-93. (2018).

  • 21. Tessier A. Campbell P. G. & Bisson M. Sequential extraction procedure for the speciation of particulate trace metals. Analytical chemistry. 51(7). pp. 844-851. (1979).

Journal information
Impact Factor

CiteScore 2018: 0.80

SCImago Journal Rank (SJR) 2018: 0.304
Source Normalized Impact per Paper (SNIP) 2018: 0.866

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 98 98 5
PDF Downloads 87 87 4