Experimentally Assisted Modelling of the Behaviour of Steel Angle Brace

Open access

Abstract

Steel frame wind bracing systems are usually made of hot rolled profiles connected to frame elements directly or through a gusset plate. The behaviour of angle bracing members is generally complex since controlled by tension or compression, bending and torsion. The common practice is to transform the problem of complex behaviour into the buckling strength of a truss member. This paper deals with an analytical formulation of the force-deformation characteristic of a single angle brace subjected to compression. A strut model takes into consideration the effect of brace end connections and softening effect of its force-deformation characteristic. Two different boundary conditions, typical for engineering practice, are dealt with. Experimental program of testing the behaviour of angle brace in portal sub-frame specimens is described. Results of experimental investigations are presented. They are used for the validation of developed model. Conclusions are formulated with reference to the application of validated brace model in the analysis of braced steel frameworks.

References

  • 1. N. S. TRAHAIR, T. USAMI, T. V. GALAMBOs, Eccentrically Loaded Single Angle Columns. Research Report No. 11, Department of Civil and Environmental Engineering, Washigton University, St. Couris, 1969.

  • 2. M. C. TEMPLE, S. S. SAKALA, Single angle compression members welded by one leg to a gusset plate. Experimental study. Canadian Journal of Civil Engineering, vo. 25, no. 3, 569-584, 1988.

  • 3. D. H. ELGAALY, W. DAWIDS, Behavior of single angle compression members. Journal of Structural Engineering, ASCE, vol. 117, no. 12, 3720-3741, 1991.

  • 4. S. M. R. ALDURI, M. K. S. MAGUDULA, Flexural buckling of steel angles. Experimental investigations. Journal of Structural Engineering, ASCE, vol. 122, no. 3, 309-317, 1996.

  • 5. S. L. CHAN, S. H. CHO, Second-order analysis and design of angle trusses. Part I: Elastic analysis and design. Engineering Structures, vol. 30, no. 3, 616-625, 2008.

  • 6. R. D. ZIEMIAN, Guide to Stability Design Criteria for Metal Structures. 6th Edition, John Wiley & Sons, 2010.

  • 7. M. A. GIŻEJOWSKI, A. M. BARSZCZ, J. D. G. FOSTER, J. UZIAK, O. J. KANYETO, Experimental investigations of the behaviour of angle struts, Proceedings of the XIth ICMS-2006 (eds. M. Giżejowski, A. Kozłowski, J. Ziółko), Taylor&Francis, Rzeszów, Poland, 152-153, 2006 [full paper on CD, 145-154].

  • 8. Y. LUI, S. CHANTEL, Experimental study of steel single unequal leg angles under eccentric compression. Journal of Constructional Steel Research, vol. 67, no. 6, 919-928, 2011.

  • 9. S. CHEN, X. WANG, Buckling Strength of Single Angle Struts. Part 1: Angles Subject to Axial Compression. Advances in Structural Engineering, vol. 16, no. 6, 1129-1137, 2013.

  • 10. S. CHEN, X. WANG, Buckling Strength of Single Angle Struts. Part 2: Angles Connected by One Leg at Both Ends. Advances in Structural Engineering, vol. 16, no. 6, 1139-1148, 2013.

  • 11. K. IKEDA, S. A. MAHIN, Cyclic response of steel braces, Journal of Structural Engineering, 112, 2, 242-261, 1986.

  • 12. W. GAN, J. F. HALL, Static and dynamic behavior of steel braces under cyclic displacements, Journal of Engineering Mechanics, 124, 1, 87-93, 1998.

  • 13. J. JIN, S. EL-TAWIL, Inelastic cyclic model for steel braces, Journal of Engineering Mechanics, 129, 5, 548-577, 2003.

  • 14. B. V. FELL, A. M. KANVINDE, G. G. DEIERLEIN, A. T. MYERS, Experimental investigation of inelastic cycling buckling and fracture of steel braces, Journal of Structural Engineering, 135, 1, 19-22, 2009.

  • 15. A. DAVARAN, M. ADELZADEH, An improved non-linear physical modeling method for brace elements. Transaction A: Civil Engineering, Scientia Iranica, 16, 1, 58-64, 2009

  • 16. M. ŁUBIŃSKI, J. KARCZEWSKI, J. KAFARSKI, Limit-state-design of spatial lattice structures. Archiwum Inżynierii Lądowej, XII, 1, 27-41, 1976 [in Polish].

  • 17. A. M. BARSZCZ, Load carrying capacity of space deck member accounted for shakedown effects, Warsaw University of Technology, Warszawa 1988 [manuscript in Polish].

  • 18. J. KARCZEWSKI, A. BARSZCZ, A large defl ections analysis of an elastic-plastic strut axially loaded in a cyclically variable manner, Archives of Civil Engineering, XLI, 2, 244-265, 1995.

  • 19. S. KATO, M. FUJIMOTO, T. OGAWA, Buckling load of steel single-layer reticulated domes of circular plan. Journal of the International Association for Shell and Spatial Structures. Vol. 46, No. 1, 41-63, 2005.

  • 20. T. OGAWA, S. KATO, M. FUJIMOTO, Buckling load of elliptic and hyperbolic paraboloidal steel single-layer reticulated shells of rectangular plan. Journal of the International Association for Shell and Spatial Structures. Vol. 49, No. 1, 21-36, 2008.

  • 21. A. STEINBOECK, G. HOEFINGER, X. JIA, H. A. MANG, Three pending questions in structural stability. Journal of the International Association for Shell and Spatial Structures. Vol. 50, No. 1, 51-64, 2009.

  • 22. G. MONTI, C. NUTI, Nonlinear cyclic behavior of reinforcing bar including buckling, Journal of Structural Engineering, 118, 12, 3268-3284, 1992

  • 23. R. DHAKAL, K. MAEKAWA, Path-dependent cyclic stress-strain relationship of reinforcing bar including buckling, Engineering Structures, 24, 11, 1383-1396, 2002

  • 24. J. KORENZ, Modeling of reinforcing bar subjected to cyclic loading in inelastic range. Przegląd Budowlany, nr 5, 141-143, 2012 [in Polish].

  • 25. J. MURZEWSKI, Theory of random load carrying capacity of rod structures, Studia z Zakresu Inżynierii, Nr. 15, KILiW PAN-PWN, Warszawa 1976 [in Polish].

  • 26. A. M. BARSZCZ, M. A. GIŻEJOWSKI, A generalized M-R-M approach for modelling of the stability behaviour of imperfect steel elements and structures, Archives of Civil Engineering, 52, 1, 59-85, 2006.

  • 27. A. M. BARSZCZ, M. A. GIZEJOWSKI, An Equivalent Stiffness Approach for Modeling the behavior of Compression Members According to Eurocode 3, Journal of Constructional Steel Research, 63, 1, 55-70, 2007.

  • 28. PN-3200/B-03200: Steel structures: Static calculations and design. PKNMiJ; Warszawa 1994.

  • 29. EN 1993-1-1, Eurocode 3: Design of steel structures. Part 1-1: General rules and rules for buildings, Brussels: CEN, 2005.

  • 30. A. BARSZCZ, M. GIŻEJOWSKI, Buckling modes and computational models of compressed bracing members. Inżynieria i Budownictwo, nr 9, 497-502, 2013 [in Polish].

  • 31. A. M. BARSZCZ, Modelling an d experimental investigations of the behaviour of angle bracing strut in steel frame. Proceedings of Local Seminar of IASS Polish Chapter: Lightweight Structures in Civil Engineering [ed. J.B. Obrębski], Warsaw: Micro-Publisher, 106-113, 2007.

  • 32. A. M. BARSZCZ, Experimental investigations of braced frame system, Inżynieria i Budownictwo, nr 7, 380-384, 2010 [in Polish].

  • 33. A. M. BARSZCZ, Investigation into the modelling of angle brace member. Proceedings of Local Seminar of IASS Polish Chapter: Lightweight Structures in Civil Engineering [ed. J.B. Obrębski], Warsaw: Micro-Publisher, 54-65, 2012.

Archives of Civil Engineering

The Journal of Polish Academy of Sciences

Journal Information


SCImago Journal Rank (SJR): 0.251
Source Normalized Impact per Paper (SNIP): 0.521

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 37 37 22
PDF Downloads 7 7 3