Damage Detection of A T-Shaped Panel by Wave Propagation Analysis in the Plane Stress / Wykrywanie Uszkodzen W Tarczy Typu T Z Uzyciem Analizy Propagacji Fal W Płaskim Stanie Naprezenia

Abstract

A computational approach to analysis of wave propagation in plane stress problems is presented. The initial-boundary value problem is spatially approximated by the multi-node C0 displacement-based isoparametric quadrilateral finite elements. To integrate the element matrices the multi-node Gauss-Legendre-Lobatto quadrature rule is employed. The temporal discretization is carried out by the Newmark type algorithm reformulated to accommodate the structure of local element matrices. Numerical simulations are conducted for a T-shaped steel panel for different cases of initial excitation. For diagnostic purposes, the uniformly distributed loads subjected to an edge of the T-joint are found to be the most appropriate for design of ultrasonic devices for monitoring the structural element integrity

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. J.F. Doyle, Wave propagation in structures: spectral analysis using fast discrete Fourier transforms (second ed.). Springer-Verlag, New York 1997.

  • 2. S. Gopalakrishnan, A. Chakraborty, D.R. Mahapatra, Spectral finite element method: wave propagation, diagnostics and control in anisotropic and inhomogeneous structures. Springer-Verlag, London 2008.

  • 3. D.S. Kumar, D.R. Mahapatra, S. Gopalakrishnan, A spectral finite element for wave propagation and structural diagnostic analysis of composite beam with transverse crack, Finite Elements in Analysis and Design 40, 1729-1751, 2004.

  • 4. T. Patera, A spectral element method for fluid dynamics: laminar flow in a channel expansion. Journal of Computational Physics 54, 468-488, 1984.

  • 5. C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, Spectral Methods in Fluid Dynamics, Springer Verlag, Berlin, Heidelberg 1998.

  • 6. R. Sridhar, A. Chakraborty, S. Gopalakrishnan, Wave propagation analysis in anisotropic and inhomogeneous uncracked and cracked structures using pseudospectral finite element method. International Journal of Solids and Structures 43, 4997-5031, 2006.

  • 7. P. Kudela, M. Krawczuk, W. Ostachowicz, Wave propagation modelling in 1D structures using spectral finite elements. Journal of Sound and Vibration, 300, 88-100, 2007.

  • 8. J. Chróścielewski, M. Rucka, K. Wilde, W. Witkowski, Formulation of spectral truss element for guided waves damage detection in spatial steel trusses. Archives of Civil Engineering 55(1), 43-63, 2009.

  • 9. W. Witkowski, M. Rucka, K. Wilde, J. Chróścielewski, Wave propagation analysis in spatial frames using spectral Timoshenko beam elements in the context of damage detection. Archives of Civil Engineering 55, 367-402, 2009.

  • 10. M. Rucka, Experimental and numerical study on damage detection in an L-joint using guided wave propagation. Journal of Sound and Vibration 329, 1760-1779, 2010.

  • 11. M. Rucka, Wave Propagation in Structures. Modelling, Experimental Studies and Application to Damage Detection, Gdansk University of Technology Publishers, Series: Monographs no. 106, Gdansk 2011.

  • 12. A. Zak, M. Krawczuk, W. Ostachowicz, Propagation of in-plane wave in an isotropic panel with a crack. Finite Elements in Analysis and Design 42, 929-941, 2006.

  • 13. A. Zak, M. Krawczuk, W. Ostachowicz, Propagation of in-plane wave in a composite panel with a crack. Finite Elements in Analysis and Design 43, 145-154, 2006.

  • 14. M. Rucka, Modelling of in-plane wave propagation in a plate using spectral element method and Kane-Mindlin theory with application to damage detection. Archive of Applied Mechanics 81, 1877-1888, 2011.

  • 15. J. Chróścielewski, M. Rucka, K. Wilde, W. Witkowski, Modelowanie propagacji fal sprezystych w tarczy typu T w kontekscie mozliwosci diagnostycznych (in Polish), Biuletyn Wojskowej Akademii Technicznej 60(1), 341-349, 2011.

  • 16. T.J.R. Hughes, The Finite Element Method: linear static and dynamics finite element analysis. Dover Publications, Inc., New York 2000.

  • 17. J.E. Marsden, T.J.R. Hughes, Mathematical foundations of elasticity. Dover Publications, Inc., New York 1994.

  • 18. D. Braess, Finite elements. Theory, fast solvers and applications in solid mechanics. Cambridge University Press 2007.

  • 19. C. Pozrikidis, Introduction to Finite and Spectral Element Methods using MATLAB R. Chapman & Hall/CRC 2005.

  • 20. R.D. Cook, D.S. Malkus, M.E. Plesha, Concepts and Applications of Finite Element Analysis, 3rd ed. New York: John Wiley & Sons 1989.

  • 21. N.N. Newmark, A method of computation for structural dynamics. Proc ASCE, J. Engng. Mech. Div. 85 (EM3), 1959.

  • 22. O.C. Zienkiewicz, R.L. Taylor, The Finite Element Metod, Butterowort-Heienmann, 2000.

OPEN ACCESS

Journal + Issues

Search