Damage Detection of A T-Shaped Panel by Wave Propagation Analysis in the Plane Stress / Wykrywanie Uszkodzen W Tarczy Typu T Z Uzyciem Analizy Propagacji Fal W Płaskim Stanie Naprezenia

Open access


A computational approach to analysis of wave propagation in plane stress problems is presented. The initial-boundary value problem is spatially approximated by the multi-node C0 displacement-based isoparametric quadrilateral finite elements. To integrate the element matrices the multi-node Gauss-Legendre-Lobatto quadrature rule is employed. The temporal discretization is carried out by the Newmark type algorithm reformulated to accommodate the structure of local element matrices. Numerical simulations are conducted for a T-shaped steel panel for different cases of initial excitation. For diagnostic purposes, the uniformly distributed loads subjected to an edge of the T-joint are found to be the most appropriate for design of ultrasonic devices for monitoring the structural element integrity

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. J.F. Doyle Wave propagation in structures: spectral analysis using fast discrete Fourier transforms (second ed.). Springer-Verlag New York 1997.

  • 2. S. Gopalakrishnan A. Chakraborty D.R. Mahapatra Spectral finite element method: wave propagation diagnostics and control in anisotropic and inhomogeneous structures. Springer-Verlag London 2008.

  • 3. D.S. Kumar D.R. Mahapatra S. Gopalakrishnan A spectral finite element for wave propagation and structural diagnostic analysis of composite beam with transverse crack Finite Elements in Analysis and Design 40 1729-1751 2004.

  • 4. T. Patera A spectral element method for fluid dynamics: laminar flow in a channel expansion. Journal of Computational Physics 54 468-488 1984.

  • 5. C. Canuto M.Y. Hussaini A. Quarteroni T.A. Zang Spectral Methods in Fluid Dynamics Springer Verlag Berlin Heidelberg 1998.

  • 6. R. Sridhar A. Chakraborty S. Gopalakrishnan Wave propagation analysis in anisotropic and inhomogeneous uncracked and cracked structures using pseudospectral finite element method. International Journal of Solids and Structures 43 4997-5031 2006.

  • 7. P. Kudela M. Krawczuk W. Ostachowicz Wave propagation modelling in 1D structures using spectral finite elements. Journal of Sound and Vibration 300 88-100 2007.

  • 8. J. Chróścielewski M. Rucka K. Wilde W. Witkowski Formulation of spectral truss element for guided waves damage detection in spatial steel trusses. Archives of Civil Engineering 55(1) 43-63 2009.

  • 9. W. Witkowski M. Rucka K. Wilde J. Chróścielewski Wave propagation analysis in spatial frames using spectral Timoshenko beam elements in the context of damage detection. Archives of Civil Engineering 55 367-402 2009.

  • 10. M. Rucka Experimental and numerical study on damage detection in an L-joint using guided wave propagation. Journal of Sound and Vibration 329 1760-1779 2010.

  • 11. M. Rucka Wave Propagation in Structures. Modelling Experimental Studies and Application to Damage Detection Gdansk University of Technology Publishers Series: Monographs no. 106 Gdansk 2011.

  • 12. A. Zak M. Krawczuk W. Ostachowicz Propagation of in-plane wave in an isotropic panel with a crack. Finite Elements in Analysis and Design 42 929-941 2006.

  • 13. A. Zak M. Krawczuk W. Ostachowicz Propagation of in-plane wave in a composite panel with a crack. Finite Elements in Analysis and Design 43 145-154 2006.

  • 14. M. Rucka Modelling of in-plane wave propagation in a plate using spectral element method and Kane-Mindlin theory with application to damage detection. Archive of Applied Mechanics 81 1877-1888 2011.

  • 15. J. Chróścielewski M. Rucka K. Wilde W. Witkowski Modelowanie propagacji fal sprezystych w tarczy typu T w kontekscie mozliwosci diagnostycznych (in Polish) Biuletyn Wojskowej Akademii Technicznej 60(1) 341-349 2011.

  • 16. T.J.R. Hughes The Finite Element Method: linear static and dynamics finite element analysis. Dover Publications Inc. New York 2000.

  • 17. J.E. Marsden T.J.R. Hughes Mathematical foundations of elasticity. Dover Publications Inc. New York 1994.

  • 18. D. Braess Finite elements. Theory fast solvers and applications in solid mechanics. Cambridge University Press 2007.

  • 19. C. Pozrikidis Introduction to Finite and Spectral Element Methods using MATLAB R. Chapman & Hall/CRC 2005.

  • 20. R.D. Cook D.S. Malkus M.E. Plesha Concepts and Applications of Finite Element Analysis 3rd ed. New York: John Wiley & Sons 1989.

  • 21. N.N. Newmark A method of computation for structural dynamics. Proc ASCE J. Engng. Mech. Div. 85 (EM3) 1959.

  • 22. O.C. Zienkiewicz R.L. Taylor The Finite Element Metod Butterowort-Heienmann 2000.

Journal information
Impact Factor

CiteScore 2018: 0.80

SCImago Journal Rank (SJR) 2018: 0.304
Source Normalized Impact per Paper (SNIP) 2018: 0.866

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 149 51 3
PDF Downloads 80 31 1