Permeability of Sand-Clay Mixtures

Open access

Abstract

This study deals with the behavior of composite blends constituted of rigid and impervious grains included in saturated clay paste of kaolin, considered as permeable and deformable. Permeability tests performed during standard oedometr tests (before each load step) highlight the key role of the original and actual state of the clay paste, and show the existence of a threshold of sand grain concentration above which a structuring effect influences its permeability. In the light of these experiments some usual homogenization methods (with simplifying assumptions to make the problem manageable) are considered in order to model the mixture permeability. Qualitative and quantitative comparisons with experimental data point out their respective domain of interest and limitations of such approaches

1. LCPC/SETRA Réalisation des remblais et des couches de forme, Guide technique GTR.(2000).

2. C. Boutin, J-L. Auriault, Dynamic behavior of porous media saturated by a visoelastic fluid. Application to bituminous concrete. Int. J. Engng. Science, 28, 11, pp 1157-1181, 1990.

3. V. Georgianou, J. Burland, D. Hight, The undrained behavior of clayed sands in triaxial compression and extension. Geotechnique, 41, 3, pp 383-393, 1990.

4. D.M. Wood, G.V. Kumar, Experimental observation of behavior of heterogeneous soils. Int. J. Cohesive Frictionnal Materials, 5, pp 373-398, 2000.

5. S. Thevanayagam, Role of intergranular contacts, friction and interactions on undrained responses of granular mixes. Physics and mechanics of soil liquefaction. Lade - Yamamuro Eds, pp 67-78, Balkema Rotterdam, 1999.

6. J-S. Lee, M. Guimaraes, J.C. Santamarina, Micaceous sand: Microscale mechanisms and macroscale response. J. Geotechnical and Geoenvironnement engineering, 133, 9, pp 1136-1143, 2007.

7. J-K. Kim, J.C. Santamarina, Sand-Rubber mixtures (large rubber chips). Revue Canadienne de Geotechnique, pp 1457-1466, 2008.

8. G. Kacprzak, Etude du comportement m´ecanique des m´elanges sable/argile. PhD ENTPE/INSA, 2006.

9. C. Boutin, G. Kacprzak, T. Doanh, Interpretation of the stiffness and permeability of Sand-Kaolin mixtures in the framework of homogenization. Anais da Academia Brasileira de Ciˆencias, 82, 1, pp 243-260, 2010.

10. E. Liszkowska, On the universal Carman-Kozeny equation for permeability estimation of granular deposits, Geologos 1, 1996.

11. R. P. Chapuis, M. Aubertin, On the use of the Kozeny-Carman equation to predict the hydraulic conductivity of soils, Canadian Geotechnical Journal, 40, pp 616-628, 2003.

12. S. Pisarczyk, Physical and mechanical features of coarse-grained soils of some valleys of mountain rivers. PhD Thesis, Warsaw Technical University 1971, [in Polish].

13. K. Biernatowski, E. Dembicki, K. Dzierżawski, W. Wolski, Foundation engineering. Design and execution, Warszawa, Arkady, 1987, [in Polish].

14. W. Kollis, Technical soil knowledge, Arkady, Warszawa, 1966, [in Polish].

15. Z. Pazdro, General hydrogeology Wyd. Geol., Warszawa, 1983, [in Polish].

16. S. Pisarczyk, B. Rymsza, Laboratory and field research of soils, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 1988, [in Polish].

17. BN-76/8950-30 Polish Standard. Hydrotechnical construction. Calculation of coefficient of filtration of cohesionless soils based on their graining and porousness [in Polish].

18. M. Amer, M. Asce, Amin, A. Awad, Permeability of cohesionless soils, Journal of the Geotechnical Engineering Division, 100, 12, pp 1039-1316, 1974.

19. F. Tavenas, P. Leblond, P. Jean, S. Leroueil, The permeability of natural soft clays. Part II : Permeability characteristics, Canadian Geotechnical Journal, 20, 4, pp 645-660, 1983.

20. A.M. Samarasinghe, Y.H. Huang, V.P. Drnevich, Permeability and consolidation of normally consolidated soils, Journal of the Geotechnical Engineering Division, 108, 6, pp 835-850, 1982.

21. T.S. Nagaraj, N.S. Pandian, P.S.R. Narasimha Raju, Stress-state-permeability relations for overconsolidated clays, G´eotechnique, 44, 2, pp 349-352, 1994.

22. G. Mesri, R.E. Olson, Mechanism controlling the permeability of clays, Clays and Clay Minerals, 19, pp 151-158, 1971.

23. A. Al Tabbaa, D. Muir Wood, Some measurements of the permeability of kaolin, G´eotechnique, 37, 4, pp 499-503, 1987.

24. A.B. Hamidon, Some laboratory studies of anisotropy of permeability of kaolin, PhD Thesis University of Glasgow, 1994.

25. G.V. Kumar, Some Aspects of The Mechanical Behavior of Mixtures of Kaolin and Coarse Sand, PhD Thesis University of Glasgow, 1996.

26. T.C. Kenney, W.A Van Veen, M.A. Swallow, M.A. Sungalia, Hydraulic conductivity of compacted bentonite-sand mixtures, Canadian Geotechnical Journal, 29, pp 364-374, 1992.

27. R.P. Chapuis, Sand-bentonite liners : predicting permeability from laboratory tests, Canadian Geotechnical Journal, 27, pp 47-57, 1990.

28. D.M. Wood, Soil behavior and critical state soil mechanics, Cambridge University Press, 1990.

29. J.K. Mitchell, Fundamentals of soil behavior, Wiley, NewYork, 1976.

30. B. Łuczak-Wilamowska, Shear strength of mixed soils: clay - sand, Zeszyty Naukowe Politechniki Białostockiej, Z. 28, t. 1, s. 201-211, 2006 [in Polish].

31. J.L. Auriault, Heterogeneous media: Is an Equivalent Homogeneous Description Always Possible? Int. J. Engng. Sci., 29, pp 785-795, 1991.

32. E. Sanchez-Palencia, Non-homogeneous media and vibration theory. In Lectures Notes in Physics, 127, Springer-Verlag, Berlin, 1980.

33. J.A. Luizar-Obregon, M.A. Murad, F.A. Rochinha, Computational Homogenization of non linear hydromechanical coupling in poroelasticity. International Journal of Multiscale Computational Engineering, 4, pp 693-732, 2006.

34. T. Chu, Z. Hashin, Plastic behaviour of composite and porous media under isotropic stress Int. J. Engng. Sci., 9, pp 971-994, 1971.

35. G. Tandon, G. Weng, A theory of particulate reinforced of plasticity. J. Appl. Mech., 55, pp 126-135, 1988.

36. Y. Qiu, G. Weng, A theory of plasticity for porous material and particulate reinforced composites. J. Appl. Mech., 59, pp 1919-1951, 1992.

37. G. Dvorak, Y. Bahei-El-Din, A. Wafa, The modeling of inelastic composite materials with the transformation field analysis. Modelling Simul. Mater. Sci. Eng, 2, pp 571-586, 1994.

38. J.C. Michel, H. Moulinec, P. Suquet, A computational scheme for linear and non linear composites with arbitrary phase contrast. Int. J. Numer. Meth. Engng., 52, pp 139-160, 2001.

39. P. Suquet, Effective behavior of nonlinear composites in continuum micromechanics, P. Suquet and A. Zaoui. Eds. pp 197-264 Springer, Wien New York, 1997.

40. J.-P. Boelher, Applications of Tensor Functions in Solid Mechanics. CISM Courses and Lectures, Springer Verlag, Wien, NY., 1987.

41. Z. Hashin, Assessment of self consistent scheme approximation : Conductivity of particulate composites. J. Comp. Mater., 2, pp 284-304, 1968.

Archives of Civil Engineering

The Journal of Polish Academy of Sciences

Journal Information


SCImago Journal Rank (SJR): 0.251
Source Normalized Impact per Paper (SNIP): 0.521

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 263 263 54
PDF Downloads 95 95 30