Cite

Prevalence of neurodegenerative diseases, most of which are life threatening and incurable, is an increasing clinical problem. To date, studies have demonstrated a superior proliferation rate of dental pulp stem cells (DPSCs) compared to other mesenchymal stem cells in vitro. DPSCs has recently been recognized as a novel treatment strategy for neurodegenerative disease, due to their advanced potential for neurogenic differentiation. The oral cavity has been described as a promising source of dental pulp stem cells. DPSCs are widely used in regenerative dentistry holding alternative capacity for osteogenic differentiation and therefore new promises for tissue and whole tooth regeneration. Dental stem cell banking offers a plentiful source of stem cells representing great potential for cell reprogramming and thus cell therapy. Recently, the association of pulp stem cells with three – dimensional scaffold templates allows for building up naturally derived implants. This review introduces to unique properties of DPSCs and biological factors influencing mineralization, proliferation and differentiation of pulp stem cells. Latest research studies are compared in terms of effectiveness and limitations of techniques for the isolation of pulp stem cells, including the enzymatic digestion and the explant culture methods. Moreover, a short overview of most recent findings and clinical application of DPSCs is proffered including progress of current research and limitations still to be addressed in the nearest future. Finally, the article presents new advances in the area of regenerative dentistry and regenerative medicine, including three dimensional printing and three dimensional analysis, emerged to deepen studies under procedures to replace the non patient specific artificial implants.

Running title: DPSCs - review

eISSN:
2544-3577
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Molecular Biology, Biochemistry