The dark side of the breastfeeding: In the light of endocrine disruptors

Open access


Breastfeeding plays an essential role in the healthy development of a newborn, but human milk is obviously compromised by pollutants from our environment. The main contaminants of human milk with endocrine-disrupting compound (EDCs) have raised concern for public and environmental health. Bisphenol A (BPA), which can leach from plastics, are among the most well-studied. Since EDs are known to cross the mammary gland barrier and BPA may accumulate in the neonate, “BPA-free” products have been introduced to the market. However, recent studies have shown that alternative bisphenols (e.g. BPS, BPF) can be detected in breast milk, have ED activities and may have developmental effects similar to BPA.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Botton J Kadawathagedara M de Lauzon-Guillain B. Endocrine disrupting chemicals and growth of children. Ann Endocrinol (Paris). 2017;78(2):108-11; DOI: 10.1016/j.ando.2017.04.009.

  • 2. Schug TT Janesick A Blumberg B Heindel JJ. Endocrine disrupting chemicals and disease susceptibility. J Steroid Biochem Mol Biol. 2011;127(3-5):204-15; DOI: 10.1016/j.jsbmb.2011.08.007.

  • 3. Miller MD Marty MA Arcus A Brown J Morry D Sandy M. Differences between children and adults: implications for risk assessment at California EPA. Int J Toxicol. 2002;21(5):403-18; DOI: 10.1080/10915810290096630.

  • 4. Nagel SC Bromfield JJ. Bisphenol a: a model endocrine disrupting chemical with a new potential mechanism of action. Endocrinology. 2013;154(6):1962-4; DOI: 10.1210/en.2013-1370.

  • 5. Rochester JR Bolden AL. Bisphenol S and F: A Systematic Review and Comparison of the Hormonal Activity of Bisphenol A Substitutes. Environ Health Perspect. 2015;123(7):643-50; DOI: 10.1289/ehp.1408989.

  • 6. Liao C Kannan K. Concentrations and profiles of bisphenol A and other bisphenol analogues in foodstuffs from the United States and their implications for human exposure. J Agric Food Chem. 2013;61(19):4655-62; DOI: 10.1021/jf400445n.

  • 7. Liao C Liu F Guo Y Moon H-B Nakata H Wu Q Kannan K. Occurrence of Eight Bisphenol Analogues in Indoor Dust from the United States and Several Asian Countries: Implications for Human Exposure. Environmental Science & Technology. 2012;46(16):9138-45; DOI: 10.1021/es302004w.

  • 8. Mendonca K Hauser R Calafat AM Arbuckle TE Duty SM. Bisphenol A concentrations in maternal breast milk and infant urine. Int Arch Occup Environ Health. 2014;87(1):13-20; DOI: 10.1007/s00420-012-0834-9.

  • 9. Crisp TM Clegg ED Cooper RL Wood WP Anderson DG Baetcke KP Hoffmann JL Morrow MS Rodier DJ Schaeffer JE Touart LW Zeeman MG Patel YM. Environmental endocrine disruption: an effects assessment and analysis. Environ Health Perspect. 1998;106 Suppl 1:11-56; DOI: 10.1289/ehp.98106s111.

  • 10. McLachlan JA. Synergistic effect of environmental estrogens: report withdrawn. Science. 1997;277(5325):462-3.

  • 11. J. Geyer H Rimkus G Scheunert I Kaune A Schramm K-W Kettrup A Zeeman M C. G. Muir D Hansen L Mackay D. Bioaccumulation and Occurrence of Endocrine-Disrupting Chemicals (EDCs) Persistent Organic Pollutants (POPs) and Other Organic Compounds in Fish and Other Organisms Including Humans. 22007:1-166.

  • 12. Street ME Angelini S Bernasconi S Burgio E Cassio A Catellani C Cirillo F Deodati A Fabbrizi E Fanos V Gargano G Grossi E Iughetti L Lazzeroni P Mantovani A Migliore L Palanza P Panzica G Papini AM Parmigiani S Predieri B Sartori C Tridenti G Amarri S. Current Knowledge on Endocrine Disrupting Chemicals (EDCs) from Animal Biology to Humans from Pregnancy to Adulthood: Highlights from a National Italian Meeting. Int J Mol Sci. 2018;19(6); DOI: 10.3390/ijms19061647.

  • 13. Landrigan CP Srivastava R Muret-Wagstaff S Soumerai SB Ross-Degnan D Graef JW Homer CJ Goldmann DA. Impact of a health maintenance organization hospitalist system in academic pediatrics. Pediatrics. 2002;110(4):720-8; DOI: 10.1542/peds.110.4.720.

  • 14. LaKind JS Amina Wilkins A Berlin CM Jr. Environmental chemicals in human milk: a review of levels infant exposures and health and guidance for future research. Toxicol Appl Pharmacol. 2004;198(2):184-208; DOI: 10.1016/j.taap.2003.08.021.

  • 15. Breastfeeding and the use of human milk. American Academy of Pediatrics. Work Group on Breastfeeding. Pediatrics. 1997;100(6):1035-9; DOI: 10.1542/peds.100.6.1035.

  • 16. Dieterich CM Felice JP O’Sullivan E Rasmussen KM. Breastfeeding and health outcomes for the mother-infant dyad. Pediatr Clin North Am. 2013;60(1):31-48; DOI: 10.1016/j.pcl.2012.09.010.

  • 17. Laug EP Kunze FM Prickett CS. Occurrence of DDT in human fat and milk. AMA Arch Ind Hyg Occup Med. 1951;3(3):245-6.

  • 18. Landrigan PJ Goldman LR. Children’s vulnerability to toxic chemicals: a challenge and opportunity to strengthen health and environmental policy. Health Aff (Millwood). 2011;30(5):842-50; DOI: 10.1377/hlthaff.2011.0151.

  • 19. Massart F Gherarducci G Marchi B Saggese G. Chemical Biomarkers of Human Breast Milk Pollution. Biomark Insights. 2008;3:159-69.

  • 20. Ito S Alcorn J. Xenobiotic transporter expression and function in the human mammary gland. Adv Drug Deliv Rev. 2003;55(5):653-65.

  • 21. McManaman JL Neville MC. Mammary physiology and milk secretion. Adv Drug Deliv Rev. 2003;55(5):629-41.

  • 22. Gudi SK K B Kumar P. EXCRETION OF DRUGS THROUGH BREAST MILK2013. 116-24 p.

  • 23. Tateoka Y. Bisphenol A Concentration in Breast Milk following Consumption of a Canned Coffee Drink. J Hum Lact. 2015;31(3):474-8; DOI: 10.1177/0890334414563732.

  • 24. McNamara PJ Abbassi M. Neonatal exposure to drugs in breast milk. Pharm Res. 2004;21(4):555-66.

  • 25. Schanker LS. Passage of drugs across body membranes. Pharmacol Rev. 1962;14:501-30.

  • 26. Mercogliano R Santonicola S. Investigation on bisphenol A levels in human milk and dairy supply chain: A review. Food Chem Toxicol. 2018;114:98-107; DOI: 10.1016/j.fct.2018.02.021.

  • 27. Tsakiris IN Goumenou M Tzatzarakis MN Alegakis AK Tsitsimpikou C Ozcagli E Vynias D Tsatsakis AM. Risk assessment for children exposed to DDT residues in various milk types from the Greek market. Food Chem Toxicol. 2015;75:156-65; DOI: 10.1016/j.fct.2014.11.012.

  • 28. Tsakiris IN Kokkinakis E Dumanov JM Tzatzarakis MN Flouris AD Vlachou M Tsatsakis AM. Comparative evaluation of xenobiotics in human and dietary milk: persistent organic pollutants and mycotoxins. Cell Mol Biol (Noisy-le-grand). 2013;59(1):58-66.

  • 29. Rogan WJ Ragan NB. Evidence of effects of environmental chemicals on the endocrine system in children. Pediatrics. 2003;112(1 Pt 2):247-52.

  • 30. Organization WH. Joint FAO/WHO expert meeting to review toxicological and health aspects of bisphenol A: final report including report of stakeholder meeting on bisphenol A 1-5 November 2010 Ottawa Canada. 2011.

  • 31. Volkel W Colnot T Csanady GA Filser JG Dekant W. Metabolism and kinetics of bisphenol a in humans at low doses following oral administration. Chem Res Toxicol. 2002;15(10):1281-7.

  • 32. Domoradzki JY Thornton CM Pottenger LH Hansen SC Card TL Markham DA Dryzga MD Shiotsuka RN Waechter JM Jr. Age and dose dependency of the pharmacokinetics and metabolism of bisphenol A in neonatal sprague-dawley rats following oral administration. Toxicol Sci. 2004;77(2):230-42; DOI: 10.1093/toxsci/kfh054.

  • 33. Mielke H Gundert-Remy U. Bisphenol A levels in blood depend on age and exposure. Toxicol Lett. 2009;190(1):32-40; DOI: 10.1016/j.toxlet.2009.06.861.

  • 34. Fabrega F Nadal M Schuhmacher M Domingo JL Kumar V. Influence of the uncertainty in the validation of PBPK models: A case-study for PFOS and PFOA. Regul Toxicol Pharmacol. 2016;77:230-9; DOI: 10.1016/j.yrtph.2016.03.009.

  • 35. Sharma RP Schuhmacher M Kumar V. The development of a pregnancy PBPK Model for Bisphenol A and its evaluation with the available biomonitoring data. Sci Total Environ. 2018;624:55-68; DOI: 10.1016/j.scitotenv.2017.12.023.

  • 36. Teeguarden JG Waechter JM Jr. Clewell HJ 3rd Covington TR Barton HA. Evaluation of oral and intravenous route pharmacokinetics plasma protein binding and uterine tissue dose metrics of bisphenol A: a physiologically based pharmacokinetic approach. Toxicol Sci. 2005;85(2):823-38; DOI: 10.1093/toxsci/kfi135.

  • 37. Edginton AN Ritter L. Predicting plasma concentrations of bisphenol A in children younger than 2 years of age after typical feeding schedules using a physiologically based toxicokinetic model. Environ Health Perspect. 2009;117(4):645-52; DOI: 10.1289/ehp.0800073.

  • 38. Migeot V Dupuis A Cariot A Albouy-Llaty M Pierre F Rabouan S. Bisphenol a and its chlorinated derivatives in human colostrum. Environ Sci Technol. 2013;47(23):13791-7; DOI: 10.1021/es403071a.

  • 39. Cao X-L Popovic S Arbuckle TE Fraser WD. Determination of free and total bisphenol A in human milk samples from Canadian women using a sensitive and selective GC-MS method. Food Additives & Contaminants: Part A. 2015;32(1):120-5; DOI: 10.1080/19440049.2014.980855.

  • 40. Mandrup K Boberg J Isling LK Christiansen S Hass U. Low-dose effects of bisphenol A on mammary gland development in rats. Andrology. 2016;4(4):673-83; DOI: 10.1111/andr.12193.

  • 41. Durando M Kass L Piva J Sonnenschein C Soto AM Luque EH Munoz-de-Toro M. Prenatal bisphenol A exposure induces preneoplastic lesions in the mammary gland in Wistar rats. Environ Health Perspect. 2007;115(1):80-6; DOI: 10.1289/ehp.9282.

  • 42. Acevedo N Davis B Schaeberle CM Sonnenschein C Soto AM. Perinatally administered bisphenol a as a potential mammary gland carcinogen in rats. Environ Health Perspect. 2013;121(9):1040-6; DOI: 10.1289/ehp.1306734.

  • 43. Verner MA Charbonneau M Lopez-Carrillo L Haddad S. Physiologically based pharmacokinetic modeling of persistent organic pollutants for lifetime exposure assessment: a new tool in breast cancer epidemiologic studies. Environ Health Perspect. 2008;116(7):886-92; DOI: 10.1289/ehp.10917.

  • 44. Yang M Ryu JH Jeon R Kang D Yoo KY. Effects of bisphenol A on breast cancer and its risk factors. Arch Toxicol. 2009;83(3):281-5; DOI: 10.1007/s00204-008-0364-0.

  • 45. Kass L Altamirano GA Bosquiazzo VL Luque EH Munoz-de-Toro M. Perinatal exposure to xenoestrogens impairs mammary gland differentiation and modifies milk composition in Wistar rats. Reprod Toxicol. 2012;33(3):390-400; DOI: 10.1016/j.reprotox.2012.02.002.

  • 46. Paulose T Speroni L Sonnenschein C Soto AM. Estrogens in the wrong place at the wrong time: Fetal BPA exposure and mammary cancer. Reprod Toxicol. 2015;54:58-65; DOI: 10.1016/j.reprotox.2014.09.012.

  • 47. Skledar DG Schmidt J Fic A Klopcic I Trontelj J Dolenc MS Finel M Masic LP. Influence of metabolism on endocrine activities of bisphenol S. Chemosphere. 2016;157:152-9; DOI: 10.1016/j.chemosphere.2016.05.027.

  • 48. Deceuninck Y Bichon E Marchand P Boquien CY Legrand A Boscher C Antignac JP Le Bizec B. Determination of bisphenol A and related substitutes/analogues in human breast milk using gas chromatography-tandem mass spectrometry. Anal Bioanal Chem. 2015;407(9):2485-97; DOI: 10.1007/s00216-015-8469-9.

  • 49. Dualde P Pardo O S FF Pastor A Yusa V. Determination of four parabens and bisphenols A F and S in human breast milk using QuEChERS and liquid chromatography coupled to mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2019;1114-1115:154-66; DOI: 10.1016/j.jchromb.2019.03.004.

  • 50. Niu Y Wang B Zhao Y Zhang J Shao B. Highly Sensitive and High-Throughput Method for the Analysis of Bisphenol Analogues and Their Halogenated Derivatives in Breast Milk. J Agric Food Chem. 2017;65(48):10452-63; DOI: 10.1021/acs.jafc.7b04394.

  • 51. Tuzimski T Pieniazek D Buszewicz G Teresinski G. QuEChERS-Based Extraction Procedures for the Analysis of Bisphenols S and A in Breast Milk Samples by LC-QqQ-MS. J AOAC Int. 2018; DOI: 10.5740/jaoacint.18-0297.

  • 52. Rubin BS Murray MK Damassa DA King JC Soto AM. Perinatal exposure to low doses of bisphenol A affects body weight patterns of estrous cyclicity and plasma LH levels. Environ Health Perspect. 2001;109(7):675-80; DOI: 10.1289/ehp.01109675.

  • 53. Ivry Del Moral L Le Corre L Poirier H Niot I Truntzer T Merlin JF Rouimi P Besnard P Rahmani R Chagnon MC. Obesogen effects after perinatal exposure of 44′-sulfonyldiphenol (Bisphenol S) in C57BL/6 mice. Toxicology. 2016;357-358:11-20; DOI: 10.1016/j.tox.2016.05.023.

  • 54. Ahmed S Atlas E. Bisphenol S- and bisphenol A-induced adipogenesis of murine preadipocytes occurs through direct peroxisome proliferator-activated receptor gamma activation. Int J Obes (Lond). 2016;40(10):1566-73; DOI: 10.1038/ijo.2016.95.

  • 55. Negri-Cesi P. Bisphenol A Interaction With Brain Development and Functions. Dose Response. 2015;13(2):1559325815590394; DOI: 10.1177/1559325815590394.

  • 56. Palanza P Gioiosa L vom Saal FS Parmigiani S. Effects of developmental exposure to bisphenol A on brain and behavior in mice. Environ Res. 2008;108(2):150-7.

  • 57. Palanza P Nagel SC Parmigiani S Vom Saal FS. Perinatal exposure to endocrine disruptors: sex timing and behavioral endpoints. Curr Opin Behav Sci. 2016;7:69-75; DOI: 10.1016/j.cobeha.2015.11.017.

  • 58. Palanza P L Howdeshell K Parmigiani S vom Saal F. Exposure to a Low Dose of Bisphenol A during Fetal Life or in Adulthood Alters Maternal Behavior in Mice. 2002:415-22.

  • 59. Catanese MC Vandenberg LN. Bisphenol S (BPS) Alters Maternal Behavior and Brain in Mice Exposed During Pregnancy/Lactation and Their Daughters. Endocrinology. 2017;158(3):516-30; DOI: 10.1210/en.2016-1723.

  • 60. Inadera H. Neurological Effects of Bisphenol A and its Analogues. Int J Med Sci. 2015;12(12):926-36; DOI: 10.7150/ijms.13267.

  • 61. Castro B Sanchez P Torres JM Ortega E. Bisphenol A bisphenol F and bisphenol S affect differently 5alpha-reductase expression and dopamine-serotonin systems in the prefrontal cortex of juvenile female rats. Environ Res. 2015;142:281-7; DOI: 10.1016/j.envres.2015.07.001.

  • 62. Richter CA Birnbaum LS Farabollini F Newbold RR Rubin BS Talsness CE Vandenbergh JG Walser-Kuntz DR vom Saal FS. In vivo effects of bisphenol A in laboratory rodent studies. Reprod Toxicol. 2007;24(2):199-224; DOI: 10.1016/j.reprotox.2007.06.004.

  • 63. Christiansen S Axelstad M Boberg J Vinggaard AM Pedersen GA Hass U. Low-dose effects of bisphenol A on early sexual development in male and female rats. Reproduction. 2014;147(4):477-87; DOI: 10.1530/rep-13-0377.

  • 64. Hass U Christiansen S Boberg J Rasmussen MG Mandrup K Axelstad M. Low-dose effect of developmental bisphenol A exposure on sperm count and behaviour in rats. Andrology. 2016;4(4):594-607; DOI: 10.1111/andr.12176.

  • 65. Quan C Wang C Duan P Huang W Yang K. Prenatal bisphenol a exposure leads to reproductive hazards on male offspring via the Akt/mTOR and mitochondrial apoptosis pathways: Prenatal Bisphenol a Exposure Leads to Male Reproductive Toxicity. 2016.

  • 66. Chen Z Zuo X He D Ding S Xu F Yang H Jin X Fan Y Ying L Tian C Ying C. Long-term exposure to a ‘safe’ dose of bisphenol A reduced protein acetylation in adult rat testes. Sci Rep. 2017;7:40337; DOI: 10.1038/srep40337.

  • 67. Mao Z Xia W Chang H Huo W Li Y Xu S. Paternal BPA exposure in early life alters Igf2 epigenetic status in sperm and induces pancreatic impairment in rat offspring. Toxicol Lett. 2015;238(3):30-8; DOI: 10.1016/j.toxlet.2015.08.009.

  • 68. Schonfelder G Flick B Mayr E Talsness C Paul M Chahoud I. In utero exposure to low doses of bisphenol A lead to long-term deleterious effects in the vagina. Neoplasia. 2002;4(2):98-102; DOI: 10.1038/sj.neo.7900212.

  • 69. Schonfelder G Friedrich K Paul M Chahoud I. Developmental effects of prenatal exposure to bisphenol a on the uterus of rat offspring. Neoplasia. 2004;6(5):584-94; DOI: 10.1593/neo.04217.

  • 70. Calhoun KC Padilla-Banks E Jefferson WN Liu L Gerrish KE Young SL Wood CE Hunt PA Vandevoort CA Williams CJ. Bisphenol A exposure alters developmental gene expression in the fetal rhesus macaque uterus. PLoS One. 2014;9(1):e85894; DOI: 10.1371/journal.pone.0085894.

  • 71. Brehm E Flaws JA. Transgenerational Effects of Endocrine-Disrupting Chemicals on Male and Female Reproduction. Endocrinology. 2019;160(6):1421-35; DOI: 10.1210/en.2019-00034.

  • 72. Chen Y Shu L Qiu Z Lee DY Settle SJ Que Hee S Telesca D Yang X Allard P. Exposure to the BPA-Substitute Bisphenol S Causes Unique Alterations of Germline Function. PLoS Genet. 2016;12(7):e1006223; DOI: 10.1371/journal.pgen.1006223.

  • 73. Shi M Sekulovski N MacLean JA 2nd Hayashi K. Effects of bisphenol A analogues on reproductive functions in mice. Reprod Toxicol. 2017;73:280-91; DOI: 10.1016/j.reprotox.2017.06.134.

  • 74. Shi M Sekulovski N MacLean JA 2nd Hayashi K. Prenatal Exposure to Bisphenol A Analogues on Male Reproductive Functions in Mice. Toxicol Sci. 2018;163(2):620-31; DOI: 10.1093/toxsci/kfy061.

  • 75. Shi M Sekulovski N MacLean JA Whorton A Hayashi K. Prenatal Exposure to Bisphenol A Analogues on Female Reproductive Functions in Mice. Toxicol Sci. 2019;168(2):561-71; DOI: 10.1093/toxsci/kfz014.

  • 76. Shi M Whorton AE Sekulovski N MacLean JA Hayashi K. Prenatal exposure to bisphenol A E and S induces transgenerational effects on female reproductive functions in mice. Toxicol Sci. 2019; DOI: 10.1093/toxsci/kfz124.

  • 77. Ahsan N Ullah H Ullah W Jahan S. Comparative effects of Bisphenol S and Bisphenol A on the development of female reproductive system in rats; a neonatal exposure study. Chemosphere. 2018;197:336-43; DOI: 10.1016/j.chemosphere.2017.12.118.

  • 78. Nevoral J Kolinko Y Moravec J Zalmanova T Hoskova K Prokesova S Klein P Ghaibour K Hosek P Stiavnicka M Rimnacova H Tonar Z Petr J Kralickova M. Long-term exposure to very low doses of bisphenol S affects female reproduction. Reproduction. 2018;156(1):47-57; DOI: 10.1530/rep-18-0092.

  • 79. Zalmanova T Hoskova K Nevoral J Adamkova K Kott T Sulc M Kotikova Z Prokesova S Jilek F Kralickova M Petr J. Bisphenol S negatively affects the meotic maturation of pig oocytes. Sci Rep. 2017;7(1):485; DOI: 10.1038/s41598-017-00570-5.

  • 80. Campen KA Lavallee M Combelles C. The impact of bisphenol S on bovine granulosa and theca cells. Reprod Domest Anim. 2018;53(2):450-7; DOI: 10.1111/rda.13130.

Journal information
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 195 195 36
PDF Downloads 135 135 16