Genes regulating programmed cell death are significantly upregulated in porcine immature oocytes

Open access


Correct maturation of the oocyte is crucial for further fertilization and embryogenesis. It comprises of both nuclear and cytoplasmic maturation, during which the proteins, nutrients and mRNAs are assembled. Cumulus cells are connected with the oocyte via gap-junctions, which enable bi-directional transfer of molecules, forming cumulus-oocyte complex (COC). The expression pattern in CCs is thought to resemble the genes expressed in the oocyte. The CCs surrounding the gamete of high developmental competence have an increased expression of apoptotic markers. Therefore, our aim in this study was to determine whether any apoptosis-related genes are upregulated in porcine oocytes before or after IVM. We isolated COCs from 45 pubertal crossbred gilts, performed brilliant cresyl blue (BCB) staining and analyzed the gene expression pattern in oocytes before and after IVM with the use of microarray analysis. The results include 419 differentially expressed transcripts, 25 of which belong to „regulation of apoptosis” and „regulation of cell death” GO BP terms. This set of genes includes BCLAF1, EIF2AK3, KLF10, MIF, MAP3K1, NOTCH2, TXNIP and APP, all of which have been upregulated in immature porcine oocytes. Our results suggest that they play part in porcine oocyte maturation and could be used as potential markers of female gamete’s developmental competence. This knowledge could serve as a basis to improve ART in pigs.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Jamnongjit M Hammes SR. Oocyte maturation: the coming of age of a germ cell. Semin Reprod Med. 2005;23:234–41; DOI:10.1055/s-2005-872451.

  • 2. Rybska M Knap S Jankowski M Jeseta M Bukowska D. Cytoplasmic and nuclear maturation of oocytes in mammals – living in the shadow of cells developmental capability. Med J Cell Biol. 2018;1; DOI:10.2478/acb-2018-0003.

  • 3. Coticchio G Dal Canto M Renzini MM Guglielmo MC Brambillasca F Turchi D Novara PV Fadini R. Oocyte maturation: Gamete-somatic cells interactions meiotic resumption cytoskeletal dynamics and cytoplasmic reorganization. Hum Reprod Update. 2014; DOI:10.1093/humupd/dmv011.

  • 4. Watson AJ. Oocyte cytoplasmic maturation: A key mediator of oocyte and embryo developmental competence1. J Anim Sci. 2007;85:E1–3; DOI:10.2527/jas.2006-432.

  • 5. Tanghe S Van Soom A Nauwynck H Coryn M de Kruif A. Minireview: Functions of the cumulus oophorus during oocyte maturation ovulation and fertilization. Mol Reprod Dev. 2002;61:414–24; DOI:10.1002/mrd.10102.

  • 6. Huang Z Wells D. The human oocyte and cumulus cells relationship: new insights from the cumulus cell transcriptome. MHR Basic Sci Reprod Med. 2010;16:715–25; DOI:10.1093/molehr/gaq031.

  • 7. Gilchrist R. Ritter L. Armstrong D. Oocyte–somatic cell interactions during follicle development in mammals. Anim Reprod Sci. 2004;82–83:431–46; DOI:10.1016/j.anireprosci.2004.05.017.

  • 8. Gilchrist RB Lane M Thompson JG. Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality. Hum Reprod Update. 2008;14:159–77; DOI:10.1093/humupd/dmm040.

  • 9. Regassa A Rings F Hoelker M Cinar U Tholen E Looft C Schellander K Tesfaye D. Transcriptome dynamics and molecular cross-talk between bovine oocyte and its companion cumulus cells. BMC Genomics. 2011;12; DOI:10.1186/1471-2164-12-57.

  • 10. Tatemoto H Sakurai N Muto N. Protection of Porcine Oocytes Against Apoptotic Cell Death Caused by Oxidative Stress During In vitro Maturation: Role of Cumulus Cells1. Biol Reprod. 2000;63:805–10; DOI:10.1095/biolreprod63.3.805.

  • 11. Barrett SL Albertini DF. Cumulus cell contact during oocyte maturation in mice regulates meiotic spindle positioning and enhances developmental competence. J Assist Reprod Genet. 2010;27:29–39; DOI:10.1007/s10815-009-9376-9.

  • 12. Dyck MK Zhou C Tsoi S Grant J Dixon WT Foxcroft GR. Reproductive technologies and the porcine embryonic transcriptome. Anim Reprod Sci. 2014;149:11–8; DOI:10.1016/J.ANIREPROSCI.2014.05.013.

  • 13. Lonergan P Fair T. Maturation of Oocytes in vitro. Annu Rev Anim Biosci. 2016;4:255–68; DOI:10.1146/annurev-animal-022114-110822.

  • 14. Li Q McKenzie LJ Matzuk MM. Revisiting oocyte-somatic cell interactions: in search of novel intrafollicular predictors and regulators of oocyte developmental competence. Mol Hum Reprod. 2008;14:673–8; DOI:10.1093/molehr/gan064.

  • 15. Lourenço B Sousa AP Almeida-Santos T Ramalho-Santos J. Relation of cumulus cell status with single oocyte maturity fertilization capability and patient age. J Reprod Infertil. 2014;15:15–21.

  • 16. Janowski D Salilew-Wondim D Torner H Tesfaye D Ghanem N Tomek W El-Sayed A Schellander K Hölker M. Incidence of apoptosis and transcript abundance in bovine follicular cells is associated with the quality of the enclosed oocyte. Theriogenology. 2012;78:656-669.e5; DOI:10.1016/J.THERIOGENOLOGY.2012.03.012.

  • 17. Walter W Sánchez-Cabo F Ricote M. GOplot: An R package for visually combining expression data with functional analysis. Bioinformatics. 2015;31:2912–4; DOI:10.1093/bioinformatics/btv300.

  • 18. Tiwari M Prasad S Tripathi A Pandey AN Ali I Singh AK Shrivastav TG Chaube SK. Apoptosis in mammalian oocytes: a review. Apoptosis. 2015;20:1019–25; DOI:10.1007/s10495-015-1136-y.

  • 19. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35:495–516; DOI:10.1080/01926230701320337.

  • 20. Kasof GM Goyal L White E. Btf a novel death-promoting transcriptional repressor that interacts with Bcl-2-related proteins. Mol Cell Biol. 1999;19:4390–404; DOI:10.1128/MCB.19.6.4390.

  • 21. Fautsch MP Vrabel A Subramaniam M Hefferen TE Spelsberg TC Wieben ED. TGFβ-inducible early gene (TIEG) also codes for early growth response a (EGRα): Evidence of multiple transcripts from alternate promoters. Genomics. 1998; DOI:10.1006/geno.1998.5388.

  • 22. Tachibana I Imoto M Adjei PN Gores GJ Subramaniam M Spelsberg TC Urrutia R. Overexpression of the TGFbeta-regulated zinc finger encoding gene TIEG induces apoptosis in pancreatic epithelial cells. J Clin Invest. 1997;99:2365–74; DOI:10.1172/JCI119418.

  • 23. Shi Y Vattem KM Sood R An J Liang J Stramm L Wek RC. Identification and characterization of pancreatic eukaryotic initiation factor 2 alpha-subunit kinase PEK involved in translational control. Mol Cell Biol. 1998;18:7499–509.

  • 24. Shi Y An J Liang J Hayes SE Sandusky GE Stramm LE Yang NN. Characterization of a mutant pancreatic eIF-2alpha kinase PEK and co-localization with somatostatin in islet delta cells. J Biol Chem. 1999;274:5723–30; DOI:10.1074/JBC.274.9.5723.

  • 25. Kittler R Putz G Pelletier L Poser I Heninger A-K Drechsel D Fischer S Konstantinova I Habermann B Grabner H Yaspo M-L Himmelbauer H Korn B Neugebauer K Pisabarro MT Buchholz F. An endoribonuclease-prepared siRNA screen in human cells identifies genes essential for cell division. Nature. 2004;432:1036–40; DOI:10.1038/nature03159.

  • 26. Lin JH Li H Yasumura D Cohen HR Zhang C Panning B Shokat KM LaVail MM Walter P. IRE1 Signaling Affects Cell Fate During the Unfolded Protein Response. Science (80- ). 2007;318:944–9; DOI:10.1126/science.1146361.

  • 27. Suzuki H Kanagawa H Nishihira J. Evidence for the presence of macrophage migration inhibitory factor in murine reproductive organs and early embryos. Immunol Lett. 1996;51:141–7.

  • 28. Wada S Fujimoto S Mizue Y Nishihira J. Macrophage migration inhibitory factor in the human ovary: presence in the follicular fluids and production by granulosa cells. Biochem Mol Biol Int. 1997;41:805–14.

  • 29. Johnson J Espinoza T McGaughey RW Rawls A Wilson-Rawls J. Notch pathway genes are expressed in mammalian ovarian follicles. Mech Dev. 2001;109:355–61; DOI:10.1016/S0925-4773(01)00523-8.

  • 30. Zhang C-P Yang J-L Zhang J Li L Huang L Ji S-Y Hu Z-Y Gao F Liu Y-X. Notch Signaling Is Involved in Ovarian Follicle Development by Regulating Granulosa Cell Proliferation. Endocrinology. 2011;152:2437–47; DOI:10.1210/en.2010-1182.

  • 31. Xu J Gridley T. Notch2 is required in somatic cells for breakdown of ovarian germ-cell nests and formation of primordial follicles. BMC Biol. 2013;11:13; DOI:10.1186/1741-7007-11-13.

  • 32. Schlesinger TK Bonvin C Jarpe MB Fanger GR Cardinaux J-R Johnson GL Widmann C. Apoptosis stimulated by the 91-kDa caspase cleavage MEKK1 fragment requires translocation to soluble cellular compartments. J Biol Chem. 2002;277:10283–91; DOI:10.1074/jbc.M106885200.

  • 33. Ou X-H Li S Xu B-Z Chen L-N Jiang M-X Chen S-Q Chen N-Q. Mitogen-activated protein kinase-activated protein kinase 2 is a critical regulator of pig oocyte meiotic maturation. Reprod Fertil Dev. 2015;29:223–33; DOI:10.1071/RD15150.

  • 34. Junn E Han SH Im JY Yang Y Cho EW Um HD Kim DK Lee KW Han PL Rhee SG Choi I. The Journal of Immunology. J Immunol. 2000;159:3921–8; DOI:10.4049/jimmunol.164.12.6287.

  • 35. Wang Y De Keulenaer GW Lee RT. Vitamin D(3)-up-regulated protein-1 is a stress-responsive gene that regulates cardiomyocyte viability through interaction with thioredoxin. J Biol Chem. 2002;277:26496–500; DOI:10.1074/jbc.M202133200.

  • 36. Salhab M Dhorne-Pollet S Auclair S Guyader-Joly C Brisard D Dalbies-Tran R Dupont J Ponsart C Mermillod P Uzbekova S. In vitro maturation of oocytes alters gene expression and signaling pathways in bovine cumulus cells. Mol Reprod Dev. 2013;80:166–82; DOI:10.1002/mrd.22148.

  • 37. Lee S-Y Lee H-S Kim E-Y Ko J-J Yoon TK Lee W-S Lee K-A. Thioredoxin-Interacting Protein Regulates Glucose Metabolism and Affects Cytoplasmic Streaming in Mouse Oocytes. PLoS One. 2013;8:e70708; DOI:10.1371/journal.pone.0070708.

  • 38. Fisher S Gearhart JD Oster-Granite ML. Expression of the amyloid precursor protein gene in mouse oocytes and embryos. Proc Natl Acad Sci U S A. 1991;88:1779.

  • 39. Kimura A Kakinuma K Yonezawa S Takahashi T. Expression of β-Amyloid Precursor Protein in the Porcine Ovary. Zoolog Sci. 2000;17:769–77; DOI:10.2108/zsj.17.769.

  • 40. Khan DR Landry DA Fournier É Vigneault C Blondin P Sirard M-A. Transcriptome meta-analysis of three follicular compartments and its correlation with ovarian follicle maturity and oocyte developmental competence in cows. Physiol Genomics. 2016;48:633–43; DOI:10.1152/physiolgenomics.00050.2016.

Journal information
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 77 77 27
PDF Downloads 67 67 16