Ontology groups representing angiogenesis and blood vessels development are highly up-regulated during porcine oviductal epithelial cells long-term real-time proliferation – a primary cell culture approach

Open access

Abstract

The morphological and biochemical modification of oviductal epithelial cells (OECs) belongs to the group of compound processes responsible for proper oocyte transport and successful fertilization. The cellular interactions between cumulus-oocyte complexes (COCs) and oviductal epithelial cells (OECs) are crucial for this unique mechanism. In the present study we have analyzed angiogenesis and blood vessel development processes at transcript levels. By employing microarrays, four ontological groups associated with these mechanisms have been described. Differentially expressed genes belonging to the “angiogenesis”, “blood circulation”, “blood vessel development” and “blood vessel morphogenesis” GO BP terms were investigated as a potential markers for the creation of new blood vessels in cells under in vitro primary culture conditions.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Huang DW Sherman BT Tan Q Kir J Liu D Bryant D Guo Y Stephens R Baseler MW Lane HC Lempicki RA. DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res. 2007;35:W169-75; DOI:10.1093/nar/gkm415.

  • 2. Walter W Sánchez-Cabo F Ricote M. GOplot: An R package for visually combining expression data with functional analysis. Bioinformatics. 2015;31:2912–4; DOI:10.1093/bioinformatics/btv300.

  • 3. von Mering C Jensen LJ Snel B Hooper SD Krupp M Foglierini M Jouffre N Huynen MA Bork P. STRING: known and predicted protein-protein associations integrated and transferred across organisms. Nucleic Acids Res. 2004;33:D433–7; DOI:10.1093/nar/gki005.

  • 4. Besenfelder U Havlicek V Brem G. Role of the Oviduct in Early Embryo Development. Reprod Domest Anim. 2012;47:156–63; DOI:10.1111/j.1439-0531.2012.02070.x.

  • 5. Avilés M Gutiérrez-Adán A Coy P. Oviductal secretions: will they be key factors for the future ARTs? MHR Basic Sci Reprod Med. 2010;16:896–906; DOI:10.1093/molehr/gaq056.

  • 6. Leese HJ Hugentobler SA Gray SM Morris DG Sturmey RG Whitear S-L Sreenan JM. Female reproductive tract fluids: composition mechanism of formation and potential role in the developmental origins of health and disease. Reprod Fertil Dev. 2008;20:1–8.

  • 7. Zumoffen CM Gil R Caille AM Morente C Munuce MJ Ghersevich SA. A protein isolated from human oviductal tissue in vitro secretion identified as human lactoferrin interacts with spermatozoa and oocytes and modulates gamete interaction. Hum Reprod. 2013;28:1297–308; DOI:10.1093/humrep/det016.

  • 8. Nawrocki MJ Budna J Celichowski P Khozmi R Bryja A Kranc W Borys S Ciesiółka S Knap S Jeseta M Bukowska D Antosik P Brüssow KP Bruska M Nowicki M Zabel M Kempisty B. Analysis of fructose and mannose regulatory peptides signaling pathway in porcine epithelial oviductal cells (OECs) primary cultured long-term in vitro. Adv Cell Biol. 2017;5:129–35; DOI:10.1515/acb-2017-0011.

  • 9. Kranc W Jankowski M Budna J Celichowski P Khozmi R Bryja A Borys S Dyszkiewicz-Konwińska M Jeseta M Magas M Bukowska D Antosik P Brüssow KP Bruska M Nowicki M Zabel M Kempisty B. Amino acids metabolism and degradation is regulated during porcine oviductal epithelial cells (OECs) primary culture in vitro a signaling pathways activation approach. Med J Cell Biol. 2018;6:18–26; DOI:10.2478/acb-2018-0004.

  • 10. Ferrara N. Vascular Endothelial Growth Factor: Basic Science and Clinical Progress. Endocr Rev. 2004;25:581–611; DOI:10.1210/er.2003-0027.

  • 11. Ribeiro LA Bacci ML Seren E Tamanini C Forni M. Characterization and differential expression of vascular endothelial growth factor isoforms and receptors in swine corpus luteum throughout estrous cycle. Mol Reprod Dev. 2007;74:163–71; DOI:10.1002/mrd.20589.

  • 12. Sugino N Kashida S Takiguchi S Karube A Kato H. Expression of Vascular Endothelial Growth Factor and Its Receptors in the Human Corpus Luteum during the Menstrual Cycle and in Early Pregnancy 1. J Clin Endocrinol Metab. 2000;85:3919–24; DOI:10.1210/jcem.85.10.6888.

  • 13. Goodger AM Rogers PA. Endometrial endothelial cell proliferation during the menstrual cycle. Hum Reprod. 1994;9:399–405.

  • 14. Reynolds LP Redmer DA. Angiogenesis in the placenta. Biol Reprod. 2001;64:1033–40.

  • 15. Nawrocki MJ Celichowski P Budna J Bryja A Kranc W Ciesiółka S Borys S Knap S Jeseta M Khozmi R Bukowska D Antosik P Brüssow KP Bruska M Nowicki M Zabel M Kempisty B. The blood vessels development morphogenesis and blood circulation are three ontologic groups highly up-regulated in porcine oocytes before in vitro maturation. Adv Cell Biol. 2017;5:135–42; DOI:10.1515/acb-2017-0012.

  • 16. Lam PM Briton-Jones C Cheung CK Lok IH Cheung LP Haines C. In vivo regulation of mRNA expression of vascular endothelial growth factor receptors (KDR and flt-1) in the human oviduct. Fertil Steril. 2004;81:416–23; DOI:10.1016/j.fertnstert.2003.06.025.

  • 17. Małysz-Cymborska I Andronowska A. Expression of the vascular endothelial growth factor receptor system in porcine oviducts after induction of ovulation and superovulation. Domest Anim Endocrinol. 2014;49:86–95; DOI:10.1016/J.DOMANIEND.2014.06.003.

  • 18. López Albors O Olsson F Llinares AB Gutiérrez H Latorre R Candanosa E Guillén-Martínez A Izquierdo-Rico MJ. Expression of the vascular endothelial growth factor system (VEGF) in the porcine oviduct during the estrous cycle. Theriogenology. 2017;93:46–54.

  • 19. Nelis H D’Herde K Goossens K Vandenberghe L Leemans B Forier K Smits K Braeckmans K Peelman L Van Soom A. Equine oviduct explant culture: a basic model to decipher embryo maternal communication. Reprod Fertil Dev. 2014;26:954–66; DOI:10.1071/RD13089.

  • 20. Lanahan A Zhang X Fantin A Zhuang Z Rivera-Molina F Speichinger K Prahst C Zhang J Wang Y Davis G Toomre D Ruhrberg C Simons M. The Neuropilin 1 Cytoplasmic Domain Is Required for VEGF-A-Dependent Arteriogenesis. Dev Cell. 2013;25:156–68; DOI:10.1016/J.DEVCEL.2013.03.019.

  • 21. Xu X Yang X-Y He B-W Yang W-J Cheng W-W. Placental NRP1 and VEGF expression in pre-eclamptic women and in a homocysteine-treated mouse model of pre-eclampsia. Eur J Obstet Gynecol Reprod Biol. 2016;196:69–75; DOI:10.1016/j.ejogrb.2015.11.017.

  • 22. Szpera-Gozdziewicz A Breborowicz GH. Endothelial dysfunction in the pathogenesis of pre-eclampsia. Front Biosci (Landmark Ed.). 2014;19:734–46.

  • 23. Akbar F Heinonen S Pirskanen M Uimari P Tuomainen T-P Salonen JT. Haplotypic association of DDAH1 with susceptibility to pre-eclampsia. MHR Basic Sci Reprod Med. 2005;11:73–7; DOI:10.1093/molehr/gah116.

  • 24. Murray-Rust J Leiper J McAlister M Phelan J Tilley S Maria JS Vallance P McDonald N. Structural insights into the hydrolysis of cellular nitric oxide synthase inhibitors by dimethylarginine dimethylaminohydrolase. Nat Struct Biol. 2001;8:679–83; DOI:10.1038/90387.

  • 25. Depoix CL Flabat O Debiève F Hubinont C. HIF1A and EPAS1 mRNA and protein expression during in vitro culture of human primary term cytotrophoblasts and effect of oxygen tension on their expression. Reprod Biol. 2016;16:203–11; DOI:10.1016/j.repbio.2016.05.001.

  • 26. Dickson BJ Gilestro GF. Regulation of Commissural Axon Pathfinding by Slit and its Robo Receptors. Annu Rev Cell Dev Biol. 2006;22:651–75; DOI:10.1146/annurev.cellbio.21.090704.151234.

  • 27. Zhou W-J Geng ZH Chi S Zhang W Niu X-F Lan S-J Ma L Yang X Wang L-J Ding Y-Q Geng J-G. Slit-Robo signaling induces malignant transformation through Hakai-mediated E-cadherin degradation during colorectal epithelial cell carcinogenesis. Cell Res. 2011;21:609–26; DOI:10.1038/cr.2011.17.

  • 28. Narayan G Goparaju C Arias-Pulido H Kaufmann AM Schneider A Dürst M Mansukhani M Pothuri B Murty V V. Promoter hypermethylation-mediated inactivation of multiple Slit-Robo pathway genes in cervical cancer progression. Mol Cancer. 2006;5:16; DOI:10.1186/1476-4598-5-16.

  • 29. Yuasa-Kawada J Kinoshita-Kawada M Rao Y Wu JY. Deubiquitinating enzyme USP33/VDU1 is required for Slit signaling in inhibiting breast cancer cell migration. Proc Natl Acad Sci. 2009;106:14530–5; DOI:10.1073/pnas.0801262106.

  • 30. Duncan WC McDonald SE Dickinson RE Shaw JL V Lourenco PC Wheelhouse N Lee K-F Critchley HOD Horne AW. Expression of the repulsive SLIT/ROBO pathway in the human endometrium and Fallopian tube. Mol Hum Reprod. 2010;16:950–9; DOI:10.1093/molehr/gaq055.

  • 31. Li P Peng H Lu W Shuai H Zha Q Yeung C Li H Wang L Ho Lee KK Zhu W Yang X. Role of Slit2/Robo1 in trophoblast invasion and vascular remodeling during ectopic tubal pregnancy. Placenta. 2015;36:1087–94; DOI:10.1016/j.placenta.2015.08.002.

  • 32. Masaki T. Historical review: Endothelin. Trends Pharmacol Sci. 2004;25:219–24; DOI:10.1016/j.tips.2004.02.008.

  • 33. Bridges PJ Cho J Ko C. Endothelins in regulating ovarian and oviductal function. Front Biosci (Schol Ed). 2011;3:145–55.

  • 34. Yamamoto Y Kohka M Kobayashi Y Woclawek-Potocka I Okuda K. Endothelin as a local regulating factor in the bovine oviduct. Reprod Fertil Dev. 2016;28:673; DOI:10.1071/RD14076.

  • 35. Kobayashi Y Yoshimoto Y Yamamoto Y Kimura K Okuda K. Roles of EDNs in regulating oviductal NO synthesis and smooth muscle motility in cows. Reproduction. 2016;151:615–22; DOI:10.1530/REP-15-0586.

  • 36. Jeoung M Lee S Hawng H-K Cheon Y-P Jeong YK Gye MC Iglarz M Ko C Bridges PJ. Identification of a novel role for endothelins within the oviduct. Endocrinology. 2010;151:2858–67; DOI:10.1210/en.2009-1155.

Search
Journal information
Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 226 226 4
PDF Downloads 174 174 5